Analysis Qualifying Exam August 17, 2018

Submit six of the problems from part 1, and three of the problems from part 2. Start every problem on a new page, label your pages and write your student ID on each page.

The symbol m denotes Lebesgue measure, and $L^1(\mathbb{R}, m)$ denotes the measurable functions on \mathbb{R} that are Lebesgue integrable.

1 Real Analysis

- 1. Let $E \subseteq \mathbb{R}$ be a set of finite Lebesgue measure, and let $E_n = \{x \in E : |x| > n\}$, for $n = 1, 2, \ldots$ Prove that $\lim_{n \to \infty} |E_n| = 0$.
- 2. Let f_j be a real-valued Borel measurable function for $j \in \mathbb{N}$. Show that $g = \sup f_j$ is Borel measurable.
- 3. Let $f \in L^1(\mathbb{R})$. Show that if

$$\int_{a}^{b} f(x)dx = 0$$

for every $a, b \in \mathbb{Q}$, a < b, then f(x) = 0 for almost every $x \in \mathbb{R}$.

4. Let

$$F(x) = \frac{1}{1+x^2}$$

and let μ be the (signed!) measure with distribution function F.

- (a) Find a Hahn decomposition of \mathbb{R} for μ . (Prove your answer.)
- (b) Find the distribution function of the total variation measure of μ .
- 5. Let $f \in L^1(\mathbb{R}, m)$. Define $g_n(x) = f(x \frac{1}{n})$ and prove that g_n converges to f in $L^1(\mathbb{R}, m)$ as $n \to \infty$. (Hint: Prove this first for continuous f.)
- 6. Let (f_n) be a sequence of functions in $L^1[0,1]$. For each of the following statements, give a proof if the result is true, or a counterexample if it is false.
 - (a) If $\lim_{n\to\infty} ||f_n||_{L^1} = 0$, then f_n converges to 0 almost everywhere.
 - (b) If $||f_n||_{L^1} < 2^{-n}$ for each n, then f_n converges to 0 almost everywhere.
- 7. Let f, g be measurable functions on \mathbb{R}^n such that $fg \in L^1(\mathbb{R}^n)$, and $g \ge 0$. Prove that

$$\int_{\mathbb{R}^n} f(x)g(x)dx = \int_0^\infty \int_{\{x \in \mathbb{R}^n : g(x) > t\}} f(x)dxdt.$$

- 8. (a) State the Lebesgue differentiation theorem.
 - (b) Let E be a Borel set in \mathbb{R} . Show that

$$\lim_{r \to 0} \frac{m(E \cap (x - r, x + r))}{m((x - r, x + r))} = \chi_E(x) \text{ a.e.}$$

2 Complex and Functional Analysis

- 9. (a) Show that there are no non-real solutions of $\cos z = 0$.
 - (b) Show that there exist constants a_k so that for all $|z| < \pi/2$

$$\frac{1}{\cos z} = 1 + \sum_{k=1}^{\infty} \frac{a_k}{(2k)!} z^{2k}.$$

10. Set $\mathbb{C}^+ = \{z \in \mathbb{C} : \Im z > 0\}$ and $\mathbb{C}^- = \{z \in \mathbb{C} : \Im z < 0\}$. Assume $f : \overline{\mathbb{C}^+} \to \mathbb{C}$ is analytic in \mathbb{C}^+ , continuous on the closure $\overline{\mathbb{C}^+}$, and real-valued on \mathbb{R} . Define

$$g:\mathbb{C}\to\mathbb{C}$$

by g(z) = f(z) if $\Im z \ge 0$, and $g(z) = \overline{f(\overline{z})}$ if $\Im z < 0$.

- (a) Show that g is analytic in C[−]. (Relate power series of g at z₀ with power series of f at z
 ₀.)
- (b) Show that g is continous everywhere in \mathbb{C} .
- (c) Show that g is entire. (Morera!)
- 11. Show that an analytic function that maps the unit disc into the unit circle is constant.
- 12. Consider the space c_0 of all real sequences converging to zero.
 - (a) State the definition of a separable normed space.
 - (b) Prove or disprove: the space c_0 is separable.
- 13. Let H be a Hilbert space over \mathbb{C} and $T \in B(H)$.
 - (a) State the definition of a Hermitian operator $T \in B(H)$.
 - (b) Give an example of a Hermitian operator.
 - (c) Prove that an operator $T \in B(H)$ is Hermitian if and only if $\langle Tx, x \rangle \in \mathbb{R}, \forall x \in H$.
- 14. Let X be a normed space over \mathbb{R} .
 - (a) State the Hahn-Banach Theorem (real version).
 - (b) Use the Hahn-Banach Theorem to prove the following statement: If $x_0 \in X$ with $x_0 \neq 0$, then $\exists f \in X^*$ with ||f|| = 1 and $f(x_0) = ||x_0||$.