Analysis Qualifying Exam August 17, 2018

Submit six of the problems from part 1, and three of the problems from part 2. Start every problem on a new page, label your pages and write your student ID on each page.

The symbol m denotes Lebesgue measure, and $L^{1}(\mathbb{R}, m)$ denotes the measurable functions on \mathbb{R} that are Lebesgue integrable.

1 Real Analysis

1. Let $E \subseteq \mathbb{R}$ be a set of finite Lebesgue measure, and let $E_{n}=\{x \in E:|x|>n\}$, for $n=1,2, \ldots$. Prove that $\lim _{n \rightarrow \infty}\left|E_{n}\right|=0$.
2. Let f_{j} be a real-valued Borel measurable function for $j \in \mathbb{N}$. Show that $g=\sup f_{j}$ is Borel measurable.
3. Let $f \in L^{1}(\mathbb{R})$. Show that if

$$
\int_{a}^{b} f(x) d x=0
$$

for every $a, b \in \mathbb{Q}, a<b$, then $f(x)=0$ for almost every $x \in \mathbb{R}$.
4. Let

$$
F(x)=\frac{1}{1+x^{2}}
$$

and let μ be the (signed!) measure with distribution function F.
(a) Find a Hahn decomposition of \mathbb{R} for μ. (Prove your answer.)
(b) Find the distribution function of the total variation measure of μ.
5. Let $f \in L^{1}(\mathbb{R}, m)$. Define $g_{n}(x)=f\left(x-\frac{1}{n}\right)$ and prove that g_{n} converges to f in $L^{1}(\mathbb{R}, m)$ as $n \rightarrow \infty$. (Hint: Prove this first for continuous f.)
6. Let $\left(f_{n}\right)$ be a sequence of functions in $L^{1}[0,1]$. For each of the following statements, give a proof if the result is true, or a counterexample if it is false.
(a) If $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{L^{1}}=0$, then f_{n} converges to 0 almost everywhere.
(b) If $\left\|f_{n}\right\|_{L^{1}}<2^{-n}$ for each n, then f_{n} converges to 0 almost everywhere.
7. Let f, g be measurable functions on \mathbb{R}^{n} such that $f g \in L^{1}\left(\mathbb{R}^{n}\right)$, and $g \geq 0$. Prove that

$$
\int_{\mathbb{R}^{n}} f(x) g(x) d x=\int_{0}^{\infty} \int_{\left\{x \in \mathbb{R}^{n}: g(x)>t\right\}} f(x) d x d t
$$

8. (a) State the Lebesgue differentiation theorem.
(b) Let E be a Borel set in \mathbb{R}. Show that

$$
\lim _{r \rightarrow 0} \frac{m(E \cap(x-r, x+r))}{m((x-r, x+r))}=\chi_{E}(x) \text { a.e. }
$$

2 Complex and Functional Analysis

9. (a) Show that there are no non-real solutions of $\cos z=0$.
(b) Show that there exist constants a_{k} so that for all $|z|<\pi / 2$

$$
\frac{1}{\cos z}=1+\sum_{k=1}^{\infty} \frac{a_{k}}{(2 k)!} z^{2 k} .
$$

10. Set $\mathbb{C}^{+}=\{z \in \mathbb{C}: \Im z>0\}$ and $\mathbb{C}^{-}=\{z \in \mathbb{C}: \Im z<0\}$. Assume $f: \overline{\mathbb{C}^{+}} \rightarrow \mathbb{C}$ is analytic in \mathbb{C}^{+}, continuous on the closure \mathbb{C}^{+}, and real-valued on \mathbb{R}. Define

$$
g: \mathbb{C} \rightarrow \mathbb{C}
$$

by $g(z)=f(z)$ if $\Im z \geq 0$, and $g(z)=\overline{f(\bar{z})}$ if $\Im z<0$.
(a) Show that g is analytic in \mathbb{C}^{-}. (Relate power series of g at z_{0} with power series of f at \bar{z}_{0}.)
(b) Show that g is continous everywhere in \mathbb{C}.
(c) Show that g is entire. (Morera!)
11. Show that an analytic function that maps the unit disc into the unit circle is constant.
12. Consider the space c_{0} of all real sequences converging to zero.
(a) State the definition of a separable normed space.
(b) Prove or disprove: the space c_{0} is separable.
13. Let H be a Hilbert space over \mathbb{C} and $T \in B(H)$.
(a) State the definition of a Hermitian operator $T \in B(H)$.
(b) Give an example of a Hermitian operator.
(c) Prove that an operator $T \in B(H)$ is Hermitian if and only if $<T x, x>\in \mathbb{R}, \forall x \in$ H.
14. Let X be a normed space over \mathbb{R}.
(a) State the Hahn-Banach Theorem (real version).
(b) Use the Hahn-Banach Theorem to prove the following statement: If $x_{0} \in X$ with $x_{0} \neq 0$, then $\exists f \in X^{*}$ with $\|f\|=1$ and $f\left(x_{0}\right)=\left\|x_{0}\right\|$.

