Analysis Qualifying Exam
 May 15, 2018

Submit six of the problems from part 1, and three of the problems from part 2. Start every problem on a new page, label your pages and write your student ID on each page.

1 Real Analysis

1. (a) State the definition of Lebesgue outer measure m^{*}.
(b) Show that $m^{*}(E)=m^{*}(E+\lambda)$ for every $E \subseteq \mathbb{R}$ and $\lambda \in \mathbb{R}$.
2. Let (X, \mathcal{M}, μ) be a measure space. Prove that there exists a σ-algebra $\overline{\mathcal{M}}$ containing \mathcal{M} and a measure $\bar{\mu}$ on $\overline{\mathcal{M}}$ so that $(X, \overline{\mathcal{M}}, \bar{\mu})$ is complete, and the restriction of $\bar{\mu}$ to \mathcal{M} is μ.
3. Let $f:[0,1] \rightarrow \mathbb{R}$ be a Lebesgue measurable function. Prove that the sets

$$
\begin{array}{r}
A=\{(x, y): x \in[0,1], y \geq f(x)\} \\
B=\{(x, f(x)): x \in[0,1]\}
\end{array}
$$

are measurable subsets of $[0,1] \times \mathbb{R}$.
4. Let $f_{n}(x)=n \sin (x / n)$, and evaluate

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi} f_{n}(x) d x
$$

5. (a) Give an example of a sequence of Borel measurable functions $\left\{f_{n}\right\}$ on \mathbb{R} that converge uniformly to 0 , but such that for every n,

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n}(x) d m(x)=\infty
$$

(b) Give an example of a sequence of continuous function on $[0,1]$ such that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d m(x)=0
$$

but the sequence $\left\{f_{n}(x)\right\}$ is not convergent for any $x \in[0,1]$.
6. Let (X, \mathcal{M}, μ) be a measure space, and consider the interval $[0, T]$ with Lebesgue measure. Let $f: X \times[0, T] \rightarrow \mathbb{R}$ be a function such that $f(\cdot, t)$ is measurable for every $t \in[0, T]$, and $f(x, \cdot)$ is continuous for each $x \in X$. Assume also that there is a function $g \in L^{1}(X)$ such that $|f(x, t)| \leq g(x)$ for almost every $x \in X$. Show that the function

$$
F(t)=\int_{X} f(x, t) d \mu(x)
$$

is continuous.
7. Let $f:[a, b] \rightarrow \mathbb{R}$ be absolutely continuous. Assume that $E \subset[a, b]$ has measure zero. Prove that $f(E)$ has also measure zero.
8. Let μ_{F} be the Borel measure on \mathbb{R} with distribution function

$$
F(x)= \begin{cases}x & \text { if } x<0 \\ 1+e^{x} \text { else }\end{cases}
$$

(a) Calculate $\mu_{F}([0,1))$ and $\mu_{F}((0,1))$.
(b) Find the Radon-Nikodym decomposition of μ_{F} with respect to Lebesgue measure.

2 Complex and Functional Analysis

9. Let f be analytic on $\{z \in \mathbb{C}:|z|<1\}$ and assume $|f(z)| \leq 1$ for $|z|<1$. Show that $\left|f^{\prime}(0)\right| \leq 1$.
10. Use contour integration to prove

$$
\int_{-\infty}^{\infty} \frac{\log |x|}{1+x^{2}} d x=0
$$

(Hint: Use the branch of the (complex) logarithm that is defined on $\mathbb{C} \backslash\{i y: y \leq 0\}$, and close $[-R,-\varepsilon] \cup[\varepsilon, R]$ in the upper half plane.)
11. Find an analytic function that maps the quarter of the open unit disk given by $\{z \in \mathbb{C}$: $|z|<1, \Re z>0, \Im z>0\}$ onto the open unit disk in a one-one fashion.
12. A normed space $(X,\| \|)$ is called rotund if $\forall x, y \in X, x \neq y$, with $\|x\|=1=\|y\|$, then $\|x+y\|<2$. Prove that every inner product space is rotund.
13. Consider the space $\left(C[0,1],\| \|_{\infty}\right)$ and let $T: C[0,1] \rightarrow C[0,1]$ be a map defined as, for all $f \in C[0,1]$,

$$
T f(x)=\int_{[0,1]} K(x, y) f(y) d y
$$

where $K:[0,1]^{2} \rightarrow \mathbb{R}$ is a continuous function. Prove that
(a) T is a bounded linear map.
(b) What is $\|T\|$? Justify your answer.
14. Let (X, d) be a complete metric space and $D \subset X$ be a dense set. Prove that if $D=\bigcap_{n} A_{n}$, where each $A_{n} \subset X$ is open, then $X \backslash D$ is of first category in X.

