Analysis Preliminary Exam

August 2020

Measure Theory and Integration

1. A set $E \subseteq[0,1]$ has the property that there exists $0<d<1$ such that for every $(\alpha, \beta) \subset[0,1]$,

$$
m(E \cap(\alpha, \beta))>d(\beta-\alpha) .
$$

Prove that $m(E)=1$. (m is Lebesgue's measure)
2. Let Q be the set of rational numbers in $(0,1]$. Let M be the algebra consisting of finite unions of sets of the form $Q \cap(a, b]$, where $0 \leq a<b \leq 1$. Define a finitely-additive set function μ on M by

$$
\mu(Q \cap(a, b])=b-a, \quad \text { and } \mu\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right),
$$

where the A_{i} are pairwise disjoint and for $1 \leq i \leq n, A_{i}=Q \cap\left(a_{i}, b_{i}\right]$ for some $a_{i}, b_{i} \in[0,1]$. Is μ countably additive on M ? Justify your answer.
3. Give an example of a sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of non-negative functions on the interval $[0,1]$ that satisfies the following properties:
(i) f_{n} is continuous for $n=1,2,3, \ldots$.
(ii) For each $x \in[0,1],\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ is unbounded.
(iii) $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=0$.
4. Let $f:[a, b] \rightarrow[0, \infty)$ be Lebesgue measurable. Define the function ω on $[0, \infty)$ by

$$
\omega(y)=m\{x: f(x)>y\}
$$

Prove that ω is right continuous (and hence measurable), and that

$$
\int_{a}^{b} f(x) d x=\int_{0}^{\infty} \omega(y) d y
$$

5. Consider the function $f(x)=\frac{1}{\sqrt{x}}$ on $[0,1]$.
(i) Show that f is is measurable on $[0,1]$.
(ii) Calculate $\int_{[0,1]} \frac{1}{\sqrt{x}} d m$. [Notice: f is not Riemann-integrable on $[0,1]$.]
6. Consider functions $f, g:[-1,1] \rightarrow \mathbb{R}$ given by

$$
\begin{aligned}
& f(x)= \begin{cases}x^{2} \cos \left(\frac{1}{x^{2}}\right) & \text { if } x \neq 0 \\
0 & \text { if } x=0\end{cases} \\
& g(x)= \begin{cases}x^{2} \cos \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\
0 & \text { if } x=0\end{cases}
\end{aligned}
$$

(i) Find $\bar{D} f(0), \underline{D} f(0), \bar{D} g(0)$ and $\underline{D} g(0)$.
(ii) Determine if f and g are of bounded variation on $[-1,1]$.
7. Consider the measure space $\left([0,1],\left.\mathcal{F}\right|_{[0,1]}, m\right)$, where m is the Lebesgue measure and \mathcal{F} is the Lebesgue measurable sets, and let ν be the counting measure on $\left.\mathcal{F}\right|_{[0,1]}$. Show that
(i) $m \ll \nu$, and
(ii) there is no function $f:[0,1] \rightarrow \mathbb{R}$ for which $m(E)=\int_{E} f d \nu$ for all $\left.E \in \mathcal{F}\right|_{[0,1]}$.
8. Let (X, \mathcal{A}, μ) and (Y, \mathcal{G}, ν) be σ-finite measure spaces and $f: X \rightarrow \mathbb{R}, g: Y \rightarrow \mathbb{R}$ be \mathcal{A} - and \mathcal{G}-measurable functions, respectively. Prove that:
(i) the function $h(x, y)=f(x) g(y)$ is $\mathcal{A} \times \mathcal{G}$-measurable
(ii) if f and g are integrable, so is h and

$$
\int_{X \times Y} h d(\mu \times \nu)=\left(\int_{X} f d \mu\right)\left(\int_{Y} h d \nu\right) .
$$

Complex, Functional and Harmonic Analysis

1. Let $\left\{f_{n}\right\}, f$ be Lebesgue measurable functions on \mathbb{R} such that $f_{n} \rightarrow f$ almost everywhere. If there exists a constant $C<\infty$ and $p>1$ such that $\left\|f_{n}\right\|_{p} \leq C$ for every n, show that $f_{n} \rightarrow f$ in L^{q} for every $1 \leq q<p$.
2. Let f be a non-negative function such that $f \in L^{p}(0,1)$ for every $p \geq 1$. If $\|f\|_{p}^{p}=\|f\|_{1}$ for every $p>1$, prove that f is the characteristic function of a measurable set $E \subseteq(0,1)$.
3. Let p, q be positive real numbers with $\frac{1}{p}+\frac{1}{q}=1$. Let $g \in L^{q}(\mathbb{R})$. For $f \in L^{p}$ and $y \in \mathbb{R}$, define the function $T_{y} f$ by $T_{y} f(x)=f(x-y)$. Let

$$
L f(y)=\int\left(T_{y} f\right)(x) g(x) d x
$$

Show that L is a continuous linear operator from L^{p} to L^{∞}.
4. Use Morera's theorem to show that f defined by

$$
f(z)=\int_{0}^{\infty} e^{-z t} t^{-3} \sin ^{3}(t) d t
$$

is analytic in $\Re z>0$.
5. Let $G \subseteq \mathbb{C}$ be a region. If $f: G \rightarrow \mathbb{C}$ is analytic except for poles, show that the poles of f cannot have a limit point in G.
6. Let $f: \mathbb{D} \rightarrow \mathbb{D}$, where $D=\{z:|z|<1\}$. Assume that $f(0)=0$ and $f^{\prime}(0)=1$. Show that $f(z)=c z$ for some constant c with $|c|=1$. (Hint: Consider $g(z)=$ $z^{-1} f(z)$.)
7. Let $T \in B\left(l_{2}(\mathbb{C})\right)$ be defined by $T(x)=\left(\alpha_{i} x_{i}\right)$, where $\left(\alpha_{i}\right) \in l_{\infty}(\mathbb{C})$ is a fixed sequence. Prove that
(i) T is linear and continuous with $\|T\|=\|\alpha\|_{\infty}$.
(ii) If $\alpha=\left(\alpha_{i}\right), \alpha_{i} \in \mathbb{R}$, for all $i \geq 1$, then T is Hermitian.
8. Consider $\left.C[0,1],\| \|_{\infty}\right)$ and let $T \in B(C[0,1])$ be defined by $T f(x)=\int_{[0, x]} f(t) d t$. Prove that T is a compact operator.
9. Let (X, d) be a metric space and M be a subset of X. Prove that
(i) If $A \subset M$ is nowhere dense in M, then A is nowhere dense in X.
(ii) If $A \subset M$ is first category in M, then A is first category in X.
(iii) If $A \subset M$ is second category in M, does it imply that A is second category in X ? Justify your answer.

