Analysis Preliminary Exam August 2020

Measure Theory and Integration

1. A set $E \subseteq [0,1]$ has the property that there exists 0 < d < 1 such that for every $(\alpha, \beta) \subset [0,1]$,

$$m(E \cap (\alpha, \beta)) > d(\beta - \alpha).$$

Prove that m(E) = 1. (*m* is Lebesgue's measure)

2. Let Q be the set of rational numbers in (0, 1]. Let M be the algebra consisting of finite unions of sets of the form $Q \cap (a, b]$, where $0 \le a < b \le 1$. Define a finitely-additive set function μ on M by

$$\mu(Q \cap (a, b]) = b - a$$
, and $\mu(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \mu(A_i)$,

where the A_i are pairwise disjoint and for $1 \leq i \leq n$, $A_i = Q \cap (a_i, b_i]$ for some $a_i, b_i \in [0, 1]$. Is μ countably additive on M? Justify your answer.

- 3. Give an example of a sequence $\{f_n\}_{n=1}^{\infty}$ of non-negative functions on the interval [0, 1] that satisfies the following properties:
 - (i) f_n is continuous for $n = 1, 2, 3, \ldots$
 - (ii) For each $x \in [0, 1]$, $\{f_n(x)\}_{n=1}^{\infty}$ is unbounded.
 - (iii) $\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = 0.$
- 4. Let $f:[a,b] \to [0,\infty)$ be Lebesgue measurable. Define the function ω on $[0,\infty)$ by

$$\omega(y) = m\{x : f(x) > y\}.$$

Prove that ω is right continuous (and hence measurable), and that

$$\int_{a}^{b} f(x)dx = \int_{0}^{\infty} \omega(y)dy.$$

- 5. Consider the function $f(x) = \frac{1}{\sqrt{x}}$ on [0, 1].
 - (i) Show that f is is measurable on [0, 1].
 - (ii) Calculate $\int_{[0,1]} \frac{1}{\sqrt{x}} dm$. [Notice: f is not Riemann-integrable on [0, 1].]

6. Consider functions $f, g: [-1, 1] \to \mathbb{R}$ given by

$$f(x) = \begin{cases} x^2 \cos(\frac{1}{x^2}) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0, \end{cases}$$
$$g(x) = \begin{cases} x^2 \cos(\frac{1}{x}) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

- (i) Find $\overline{D}f(0)$, $\underline{D}f(0)$, $\overline{D}g(0)$ and $\underline{D}g(0)$.
- (ii) Determine if f and g are of bounded variation on [-1, 1].
- 7. Consider the measure space $([0, 1], \mathcal{F}|_{[0,1]}, m)$, where *m* is the Lebesgue measure and \mathcal{F} is the Lebesgue measurable sets, and let ν be the counting measure on $\mathcal{F}|_{[0,1]}$. Show that
 - (i) $m \ll \nu$, and
 - (ii) there is no function $f: [0,1] \to \mathbb{R}$ for which $m(E) = \int_E f d\nu$ for all $E \in \mathcal{F}|_{[0,1]}$.
- 8. Let (X, \mathcal{A}, μ) and (Y, \mathcal{G}, ν) be σ -finite measure spaces and $f : X \to \mathbb{R}, g : Y \to \mathbb{R}$ be \mathcal{A} - and \mathcal{G} -measurable functions, respectively. Prove that:
 - (i) the function h(x, y) = f(x)g(y) is $\mathcal{A} \times \mathcal{G}$ -measurable
 - (ii) if f and g are integrable, so is h and

$$\int_{X \times Y} h \ d(\mu \times \nu) = \left(\int_X f \ d\mu\right) \ \left(\int_Y h \ d\nu\right).$$

Complex, Functional and Harmonic Analysis

- 1. Let $\{f_n\}$, f be Lebesgue measurable functions on \mathbb{R} such that $f_n \to f$ almost everywhere. If there exists a constant $C < \infty$ and p > 1 such that $||f_n||_p \leq C$ for every n, show that $f_n \to f$ in L^q for every $1 \leq q < p$.
- 2. Let f be a non-negative function such that $f \in L^p(0,1)$ for every $p \ge 1$. If $\|f\|_p^p = \|f\|_1$ for every p > 1, prove that f is the characteristic function of a measurable set $E \subseteq (0,1)$.
- 3. Let p, q be positive real numbers with $\frac{1}{p} + \frac{1}{q} = 1$. Let $g \in L^q(\mathbb{R})$. For $f \in L^p$ and $y \in \mathbb{R}$, define the function $T_y f$ by $T_y f(x) = f(x y)$. Let

$$Lf(y) = \int (T_y f)(x)g(x)dx.$$

Show that L is a continuous linear operator from L^p to L^{∞} .

4. Use Morera's theorem to show that f defined by

$$f(z) = \int_0^\infty e^{-zt} t^{-3} \sin^3(t) dt$$

is analytic in $\Re z > 0$.

- 5. Let $G \subseteq \mathbb{C}$ be a region. If $f : G \to \mathbb{C}$ is analytic except for poles, show that the poles of f cannot have a limit point in G.
- 6. Let $f : \mathbb{D} \to \mathbb{D}$, where $D = \{z : |z| < 1\}$. Assume that f(0) = 0 and f'(0) = 1. Show that f(z) = cz for some constant c with |c| = 1. (Hint: Consider $g(z) = z^{-1}f(z)$.)
- 7. Let $T \in B(l_2(\mathbb{C}))$ be defined by $T(x) = (\alpha_i x_i)$, where $(\alpha_i) \in l_{\infty}(\mathbb{C})$ is a fixed sequence. Prove that
 - (i) T is linear and continuous with $||T|| = ||\alpha||_{\infty}$.
 - (ii) If $\alpha = (\alpha_i), \ \alpha_i \in \mathbb{R}$, for all $i \ge 1$, then T is Hermitian.
- 8. Consider $C[0,1], \| \|_{\infty}$ and let $T \in B(C[0,1])$ be defined by $Tf(x) = \int_{[0,x]} f(t)dt$. Prove that T is a compact operator.
- 9. Let (X, d) be a metric space and M be a subset of X. Prove that
 - (i) If $A \subset M$ is nowhere dense in M, then A is nowhere dense in X.
 - (ii) If $A \subset M$ is first category in M, then A is first category in X.
 - (iii) If $A \subset M$ is second category in M, does it imply that A is second category in X? Justify your answer.