Analysis Preliminary Exam, January 2020

Submit six of the problems from part 1, and three of the problems from part 2. Start every problem on a new page, label your pages and write your student ID on each page.

Measure Theory and Integration

1. Show that if $E_{1} \cup E_{2}$ is Lebesgue measurable and $m\left(E_{2}\right)=0$, then E_{1} is Lebesgue measurable.
2. For every $\epsilon>0$ and every subset E of the real numbers, define

$$
\mu_{\epsilon}(E)=\inf \sum_{n=1}^{\infty}\left(m\left(I_{n}\right)\right)^{1 / 2}
$$

where the infimum is taken over all countable collections of open intervals $\left\{I_{1}, I_{2}, \ldots\right\}$ with length less than ϵ that cover E.
(a) Show that μ_{ϵ} is an outer measure on \mathbb{R}.
(b) Let $\mu(E):=\sup _{\epsilon>0} \mu_{\epsilon}(E)=\lim _{\epsilon \rightarrow 0+} \mu_{\epsilon}(E)$. Show that $\mu(0,1)=+\infty$. Hint: $m\left(I_{n}\right)^{1 / 2}=\frac{m\left(I_{n}\right)}{m\left(I_{n}\right)^{1 / 2}} \geq \epsilon^{-1 / 2} m\left(I_{n}\right)$.
3. Let $A \subset \mathbb{R}$ such that $m(A)=0$. Let $B=\left\{x \in \mathbb{R}: x=y^{2}\right.$ for some $\left.y \in A\right\}$. Prove that $m(B)=0$.
4. Let $f \in L^{1}[0,1]$. Show that

$$
\lim _{k \rightarrow \infty} \int_{0}^{1} x^{k} f(x) d x
$$

exists and find its value.
5. Give an example of a Borel measurable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f(x, y)$ is Lebesgue integrable with respect to y for every fixed x, and integrable with respect to x for every fixed y, the functions $x \rightarrow \int_{\mathbb{R}} f(x, y) d y$ and $y \rightarrow \int_{\mathbb{R}} f(x, y) d x$ are Lebesgue integrable, but

$$
\int_{\mathbb{R}}\left[\int_{\mathbb{R}} f(x, y) d y\right] d x \neq \int_{\mathbb{R}}\left[\int_{\mathbb{R}} f(x, y) d x\right] d y
$$

6. Let $f:[a, b] \rightarrow[0, \infty)$ be Lebesgue measurable. Define the function ω on $[0, \infty)$ by

$$
\omega(y)=m\{x: f(x)>y\} .
$$

Prove that ω is right continuous (and hence measurable), and that

$$
\int_{a}^{b} f(x) d x=\int_{0}^{\infty} \omega(y) d y
$$

7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an absolutely continuous function and $g: \mathbb{R} \rightarrow \mathbb{R}$ be a Lipschitz function. Prove that $g \circ f$ is absolutely continuous.
8. Let E be a Lebesgue measurable set and let m be Lebesgue measure. The density δ of E at a point $x \in \mathbb{R}$ is defined by

$$
\delta(x)=\lim _{h \rightarrow 0} \frac{m[(x-h, x+h) \cap E]}{2 h},
$$

provided that this limit exists.
(a) Prove that $\delta(x)=\chi_{E}(x)$ for almost every x. Hint: Consider the integral of $\chi_{E}(x)$.
(b) Let $E=\cup_{n=1}^{\infty}\left(\frac{1}{2 n+1}, \frac{1}{2 n}\right)$. Calculate the density of E at 0 .

Complex, Functional and Harmonic Analysis

1. (a) Show that there are no non-real solutions of $\cos z=0$.
(b) Show that there exist constants a_{k} so that for all $|z|<\pi / 2$

$$
\frac{1}{\cos z}=1+\sum_{k=1}^{\infty} \frac{a_{k}}{(2 k)!} z^{2 k}
$$

2. Calculate

$$
\int_{|z|=1}\left(e^{2 \pi z}+1\right)^{-1} d z
$$

where the integration path is traced counterclockwise.
3. (a) State Schwarz's Lemma.
(b) Let $f: D \rightarrow D$, where $D=\{z:|z|<1\}$. Assume $f(0)=0$ and $f^{\prime}(0)=1$. Show that $f(z)=c z$ for some constant c with $|c|=1$. (Hint: Consider $z^{-1} f(z)$.)
4. Prove that there is no one-to-one conformal map of $D \backslash\{0\}$ onto A.
5. Let p, q, r be positive real numbers with $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1$. Let $f \in L^{p}, g \in L^{q}$ and $h \in L^{r}$. Prove the generalized Hölder's inequality,

$$
\|f g h\|_{1} \leq\|f\|_{p}\|g\|_{q}\|h\|_{r} .
$$

6. Show that the triangle inequality fails for weak L^{p} spaces: Find two functions f, g in $L^{p}[0,1]$ (with Lebesgue measure) such that $[f]_{p}=1,[g]_{p}=1$ and $[f+g]_{p}>2$.
7. Let $f \in L^{1}(\mathbb{T})$ such that $\{\widehat{f}(n)\}_{n \in \mathbb{Z}} \in \ell^{1}(\mathbb{Z})$. Show that there is a continuous function g such that $g=f$ a.e.
8. State and prove Riemann-Lebesgue Lemma.
9. Consider the space c_{0} of all real sequences converging to zero.
(a) State the definition of a separable normed space.
(b) Prove or disprove: the space c_{0} is separable.
10. Let H be a Hilbert space and A a non-empty closed convex subset of H. Show that A has a unique element of minimal norm.
11. Prove that a necessary and sufficient condition for a normed space X to be complete is that for every sequence of vectors $\left\{x_{n}\right\} \subset X$ such that $\sum_{n=1}^{\infty}\left\|x_{n}\right\|<\infty$, the series $\sum_{n=1}^{\infty} x_{n}$ converges to an element $x \in X$.
12. Consider the space $\left(L_{2}[0,1],\| \|_{2}\right)$ and let $T: L_{2}[0,1] \rightarrow L_{2}[0,1]$ be a map defined as, for all $f \in L_{2}[0,1]$,

$$
T f(x)=\int_{[0,1]} K(x, y) f(y) d y
$$

where $K:[0,1]^{2} \rightarrow \mathbb{R}$ is a continuous function. Prove that
(a) T is a bounded linear map.
(b) What is $\|T\|$? Justify your answer.

