Analysis Preliminary Exam
Measure Theory and Integration

Submit six of the following problems. Start every problem on a new page, label your pages, and write your student ID on each page.

1. Let M be the collection of subsets of \mathbb{R} which are either countable or have countable complement.

 (a) Prove that M is σ-algebra on \mathbb{R}.

 (b) Let $E \in M$, and define $\mu(E) = 0$ if E is countable and $\mu(E) = 1$ if E has countable complement. Prove that μ is a measure on M.

 (c) Is μ absolutely continuous with respect to the Lebesgue measure m restricted to M? Justify your answer.

2. Consider \mathbb{R} with its usual topological structure.

 (a) Write the definition of Lebesgue outer measure $m^*(A)$ of a set $A \subseteq \mathbb{R}$.

 (b) Prove that if $m^*(A) = 0$ for a set $A \subseteq \mathbb{R}$, then A is Lebesgue measurable.

 (c) Calculate $m^*(\mathbb{Q})$, where \mathbb{Q} is the set of rationals. Justify your work.

3. Let (X, \mathcal{M}, μ) be a measure space and let $\{f_n\}$ be a sequence of measurable functions.

 (a) Write the definition of convergence in measure of f_n to f.

 (b) Give an example of a sequence f_n and a function f such that f_n converges in measure to f, but it does not converge to f for any $x \in X$.

 (c) Assume that f_n converges to f for almost every $x \in X$, and also assume that $\mu(X) < \infty$. Prove that f_n converges to f in measure.

4. Let (X, \mathcal{M}, μ) be a measure space.

 (a) Let $\{f_n\}$ be a sequence of measurable functions and assume that there exists a non-negative measurable function F such that $|f_n| \leq F$ for every n, and

 \[\int_X F \, d\mu < \infty. \]

 Prove that

 \[\int_X \limsup f_n \, d\mu \geq \limsup \int_X f_n \, d\mu. \]

 (1)

 (b) Give an example of a sequence f_n for which there is no dominating F and the inequality 1 fails.

5. Compute the following limit, proving everything using appropriate convergence theorems:

\[\lim_{n \to \infty} \int_0^\infty \frac{1 + \frac{x}{\sqrt{\log n}} e^{-x/n^2}}{(x+1)^2} \, dx. \]
6. Let \((X \times Y, \mathcal{M} \times \mathcal{N}, \mu \times \nu)\) be a product measure space.

 (a) State Fubini’s theorem.

 (b) Let \(E\) and \(F\) be measurable subsets of \(X \times Y\), such that \(\nu(E_x) = \nu(F_x)\) for almost every \(x \in X\). Prove that \(\mu \times \nu(E) = \mu \times \nu(F)\).

7. Let \(m\) be Lebesgue measure in \(\mathbb{R}^n\). Prove that for any finite collection of open balls \(\{B_1, \ldots, B_N\}\), there exists a disjoint subcollection \(\{B_{i_1}, \ldots, B_{i_k}\}\) such that

\[
m(\bigcup_{j=1}^N B_j) \subseteq 3^n \sum_{\ell=1}^k B_{i_\ell}.
\]

8. Let \(f\) be absolutely continuous on the interval \([\epsilon, 1]\) for every \(0 < \epsilon < 1\).

 (a) If \(f\) is continuous at 0, does it follow that \(f\) is absolutely continuous on \([0, 1]\)?

 (b) If \(f\) has bounded variation on \([0, 1]\), does it follow that \(f\) is absolutely continuous on \([0, 1]\)?