Analysis Preliminary Exam January 2024

Submit six of the following problems. Start every problem on a new page, label your pages, and write your student ID on each page. Do not write your name.

1. Let $g: X \to Y$ be a function. Let \mathcal{B} be a σ -algebra on Y. Show that

$$\mathcal{A} = \{g^{-1}(E) : E \in \mathcal{B}\}$$

is a σ -algebra on X.

- 2. Let (X, \mathcal{M}) be a measurable space and μ be a finitely additive set function on \mathcal{M} . Prove that μ is a measure iff it is continuous from below.
- 3. Let (X, \mathcal{M}) be a measurable space and let $X = A \cup B$, where $A, B \in \mathcal{M}$. Prove that a function $f : X \to \mathbb{R}$ is measurable iff f is measurable on A and B.
- 4. Let (X, \mathcal{M}, μ) be a measure space.
 - (i) State Monotone Convergence Theorem.
 - (ii) Assume that If $\{f_n\}$ is a sequence of nonnegative functions on X with $\int f_1 < \infty$. Prove that if $\{f_n\}$ decreases pointwise to a function f, then $\int f = \lim_n f_n(x)$.
- 5. (a) State the definitions of convergence in L_1 and convergence in measure.
 - (b) Prove that if $f_n \xrightarrow{L_1} f$, then $f_n \xrightarrow{m} f$.
 - (c) Show by an example that the converse of the statement in (b) is not valid.
- 6. (a) State Fubini's Theorem.
 - (b) Calculate the integral

$$\int_{[0,\frac{\pi}{2}]} \int_{[y,\frac{\pi}{2}]} \frac{y \sin x}{x} dx dy \text{ and justify your solution.}$$

7. Consider the function

$$f(x,y) = \begin{cases} \frac{xy}{(x^2 + y^2)^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- (a) Show that $\int_{[0,1]} (\int_{[0,1]} f dm(x)) dm(y) = \int_{[0,1]} (\int_{[0,1]} f dm(y)) dm(x).$
- (b) Prove that f is not m^2 -integrable on $[0, 1] \times [0, 1]$.
- (c) Does the results in (a) and (b) contradict each other? Justify.
- 8. Let $f : \mathbb{R} \to \mathbb{R}$ be defined as

$$f(x) = \begin{cases} x \sin(\frac{1}{x}) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

- a) Determine $\overline{D}f(0)$ and $\underline{D}f(0)$.
- b) Prove that f is <u>not</u> of bounded variation on [0, 1].
- c) Show that f is uniformly continuous on on [0, 1].