Submit six of the following problems. Start every problem on a new page, label your pages, and write your student ID on each page. Do not write your name.

1. Let \(g : X \rightarrow Y \) be a function. Let \(B \) be a \(\sigma \)-algebra on \(Y \). Show that
 \[
 A = \{ g^{-1}(E) : E \in B \}
 \]
 is a \(\sigma \)-algebra on \(X \).

2. Let \((X, \mathcal{M}) \) be a measurable space and \(\mu \) be a finitely additive set function on \(\mathcal{M} \). Prove that \(\mu \) is a measure iff it is continuous from below.

3. Let \((X, \mathcal{M}) \) be a measurable space and let \(X = A \cup B \), where \(A, B \in \mathcal{M} \). Prove that a function \(f : X \rightarrow \mathbb{R} \) is measurable iff \(f \) is measurable on \(A \) and \(B \).

4. Let \((X, \mathcal{M}, \mu) \) be a measure space.
 (i) State Monotone Convergence Theorem.
 (ii) Assume that \(\{ f_n \} \) is a sequence of nonnegative functions on \(X \) with \(\int f_1 < \infty \). Prove that if \(\{ f_n \} \) decreases pointwise to a function \(f \), then \(\int f = \lim_n f_n(x) \).

5. (a) State the definitions of convergence in \(L_1 \) and convergence in measure.
 (b) Prove that if \(f_n \overset{L_1}{\rightarrow} f \), then \(f_n \overset{m}{\rightarrow} f \).
 (c) Show by an example that the converse of the statement in (b) is not valid.

6. (a) State Fubini’s Theorem.
 (b) Calculate the integral
 \[
 \int_{[0, \pi/2]} \int_{[y, \pi/2]} \frac{y \sin x}{x} \, dx \, dy
 \]
 and justify your solution.

7. Consider the function
 \[
 f(x, y) = \begin{cases}
 \frac{xy}{(x^2 + y^2)^2} & \text{if } (x, y) \neq (0, 0) \\
 0 & \text{if } (x, y) = (0, 0).
 \end{cases}
 \]
 (a) Show that \(\int_{[0,1]}(\int_{[0,1]} fdm(x))dm(y) = \int_{[0,1]}(\int_{[0,1]} fdm(y))dm(x) \).
 (b) Prove that \(f \) is not \(m^2 \)-integrable on \([0, 1] \times [0, 1] \).
 (c) Does the results in (a) and (b) contradict each other? Justify.

8. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be defined as
 \[
 f(x) = \begin{cases}
 x \sin(\frac{1}{x}) & \text{if } x \neq 0 \\
 0 & \text{if } x = 0.
 \end{cases}
 \]
 a) Determine \(Df(0) \) and \(Df(0) \).
 b) Prove that \(f \) is not of bounded variation on \([0, 1]\).
 c) Show that \(f \) is uniformly continuous on \([0, 1]\).