Analysis Preliminary Exam January 2024

Submit six of the following problems. Start every problem on a new page, label your pages, and write your student ID on each page. Do not write your name.

1. Let $g: X \rightarrow Y$ be a function. Let \mathcal{B} be a σ-algebra on Y. Show that

$$
\mathcal{A}=\left\{g^{-1}(E): E \in \mathcal{B}\right\}
$$

is a σ-algebra on X.
2. Let (X, \mathcal{M}) be a measurable space and μ be a finitely additive set function on \mathcal{M}. Prove that μ is a measure iff it is continuous from below.
3. Let (X, \mathcal{M}) be a measurable space and let $X=A \cup B$, where $A, B \in \mathcal{M}$. Prove that a function $f: X \rightarrow \mathbb{R}$ is measurable iff f is measurable on A and B.
4. Let (X, \mathcal{M}, μ) be a measure space.
(i) State Monotone Convergence Theorem.
(ii) Assume that If $\left\{f_{n}\right\}$ is a sequence of nonnegative functions on X with $\int f_{1}<$ ∞. Prove that if $\left\{f_{n}\right\}$ decreases pointwise to a function f, then $\int f=\lim _{n} f_{n}(x)$.
5. (a) State the definitions of convergence in L_{1} and convergence in measure.
(b) Prove that if $f_{n} \xrightarrow{L_{1}} f$, then $f_{n} \xrightarrow{m} f$.
(c) Show by an example that the converse of the statement in (b) is not valid.
6. (a) State Fubini's Theorem.
(b) Calculate the integral

$$
\int_{\left[0, \frac{\pi}{2}\right]} \int_{\left[y, \frac{\pi}{2}\right]} \frac{y \sin x}{x} d x d y \text { and justify your solution. }
$$

7. Consider the function

$$
f(x, y)=\left\{\begin{array}{l}
\frac{x y}{\left(x^{2}+y^{2}\right)^{2}} \text { if }(x, y) \neq(0,0) \\
0 \text { if }(x, y)=(0,0) .
\end{array}\right.
$$

(a) Show that $\int_{[0,1]}\left(\int_{[0,1]} f d m(x)\right) d m(y)=\int_{[0,1]}\left(\int_{[0,1]} f d m(y)\right) d m(x)$.
(b) Prove that f is not m^{2}-integrable on $[0,1] \times[0,1]$.
(c) Does the results in (a) and (b) contradict each other? Justify.
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as

$$
f(x)= \begin{cases}x \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

a) Determine $\bar{D} f(0)$ and $\underline{D} f(0)$.
b) Prove that f is not of bounded variation on $[0,1]$.
c) Show that f is uniformly continuous on on $[0,1]$.

