Analysis Qualifying Exam May 2019

Submit six of the problems from part 1, and three of the problems from part 2. Start every problem on a new page, label your pages and write your student ID on each page.

1 Real Analysis

Throughout, m denotes Lebesgue measure. You may use without proof the Lebesgue dominated convergence theorem and Fubini's theorem.

- 1. (a) Give the definition of a Lebesgue measurable set in \mathbb{R}^n .
 - (b) Show that a set $A \subseteq \mathbb{R}^n$ of outer measure zero is measurable.
- 2. Let μ_F be the (signed) Borel measure with distribution function

$$F(x) = \begin{cases} x & \text{if } x < 0, \\ x - 1 & \text{if } 0 \le x < 1, \\ x - 2 & \text{if } x \ge 1. \end{cases}$$

- (a) Find a Hahn-decomposition of \mathbb{R} for μ_F .
- (b) Find the Radon-Nikodym decomposition of μ_F with respect to Lebesgue measure.
- 3. Prove or give a counterexample: If (f_n) converges to f in $L^1[0,1]$, then $f_n \to f$ pointwise.
- 4. (a) Define what it means for $f : \mathbb{R} \to \mathbb{R}$ to be Lebesgue measurable.
 - (b) Let $f_n : \mathbb{R} \to \mathbb{R}$ be measurable for $n \in \mathbb{N}$. Show that $g = \inf_n f_n$ is measurable.
- 5. Let \mathcal{A} be an algebra of sets that is closed under countable increasing unions. Show that \mathcal{A} is a σ -algebra.
- 6. (a) Give the definition of a function of bounded variation on the interval [0,1]
 - (b) If f, g are functions of bounded variation on [0, 1], is fg a function of bounded variation on [0, 1]? Justify your answer.
- 7. (a) State the Dominated Convergence Theorem.

(b) Let
$$f_n(x) = \frac{nx \ln x}{1 + n^2 x^2}$$
. Find $\lim_{n \to \infty} \int_{[0,1]} f_n dm$. Justify your answer.

8. Using Fubini's Theorem and the fact that $1/x = \int_0^\infty e^{-xt} dt$ for x > 0, compute the integral $\int_0^\infty \frac{\sin x}{x} dx$. Justify your work.

2 Complex, Functional, and Harmonic Analysis

- 9. Use Cauchy's integral formula to prove Liouville's theorem that every bounded function is constant.
- 10. Let $f : \mathbb{C} \to \mathbb{C}$ be analytic on the upper half plane and continuous on the closed half plane $\Im z \ge 0$ and is real valued on \mathbb{R} . Define

$$g(z) = \begin{cases} f(z) & \text{if } \Im z \ge 0, \\ \overline{f(\bar{z})} & \text{if } \Im z < 0. \end{cases}$$

Show that g is entire.

- 11. (a) Let G be the open unit disk. If $u: G \to \mathbb{R}$ is harmonic, show that u has a harmonic conjugate.
 - (b) Find an example illustrating that the statement of (a) is false if G is the punctured unit disk.
- 12. Let (X, μ) be a measure space with $\mu(X) = 1$. Let $f, g \in L^1(X, \mu)$ be positive functions satisfying $f(x)g(x) \ge 1$ μ -a.e. Use Hölder's inequality to show that

$$\left(\int_X f d\mu\right) \left(\int_X g d\mu\right) \ge 1.$$

- 13. Prove that if $f \in weakL^p$ and $\mu\{x : f(x) \neq 0\} < \infty$, then $f \in L^q$ for all q < p.
- 14. Let $f \in L^1(\mathbb{T})$ and let $\{\widehat{f}(n)\}_{n \in \mathbb{Z}}$ its Fourier coefficients. State and prove the Riemann-Lebesgue Lemma.
- 15. Let $\phi \in L^1(\mathbb{R}^n)$ such that $\int \phi = 1$. Define $\phi_t(x) = t^{-n}\phi(x/t)$. Show that for every $f \in L^p$ we have

$$\lim_{t \to 0} \|\phi_t \star f - f\|_p = 0.$$

- 16. Let \mathcal{H} be a Hilbert space and $T : \mathcal{H} \to \mathcal{H}$ be a bounded linear map. Prove that $||T||^2 = ||TT^*|| = ||T^*||^2$.
- 17. Let \mathcal{X} be a Banach space and $T: \mathcal{X} \to \mathcal{X}$.
 - (a) State the Open Mapping Theorem.
 - (b) If T is an invertible bounded linear map, prove that so is T^{-1} .
- 18. (a) State the definition of a reflexive normed space.
 - (b) Let \mathcal{X} be a reflexive Banach space and \mathcal{Y} be a closed subspace. Prove that \mathcal{Y} is also a reflexive Banach space.