Analysis Qualifying Exam
 August 2019

Submit six of the problems from part 1, and three of the problems from part 2. Start every problem on a new page, label your pages and write your student ID on each page.

1 Real Analysis

Throughout, m denotes Lebesgue measure. You may use without proof the Lebesgue dominated convergence theorem, monotone convergence theorem, and Fubini's theorem.

1. For a set $M \subseteq \mathbb{R}^{n}$ let $\rho_{M}(x)=\inf _{m \in M}\|x-m\|$ where $\|$.$\| is the Euclidean distance$ function. Show that for two closed, disjoint sets M, N the function

$$
f(x)=\frac{\rho_{M}(x)}{\rho_{M}(x)+\rho_{N}(x)}
$$

is continuous on \mathbb{R}^{n}, satisfies $f(x)=1$ for $x \in N$ and $f(x)=0$ for $x \in M$.
2. Let f_{n} be real-valued Borel measurable functions. Show that g defined by $g(x)=$ $\sup _{n} f_{n}(x)$ is Borel measurable.
3. Suppose $f_{n}: X \rightarrow[0, \infty]$ is a sequence of measurable functions with $f_{1} \geq f_{2} \geq \ldots \geq 0$, $f_{n} \rightarrow f$ pointwise, and $f_{1} \in L^{1}(X, \mu)$. Prove that

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

Show that the conclusion fails if $f_{1} \notin L^{1}(X, \mu)$.
4. Let $\mu=\mu_{F}$ be the signed measure on \mathbb{R} with distribution function

$$
F(x)= \begin{cases}-e^{x} & \text { if } x<0 \\ e^{-x} & \text { if } x \geq 0\end{cases}
$$

Find the total variation measure of μ.
5. Let X be an uncountable set and \mathcal{A} the collection of all sets $E \subseteq X$ such that either E or E^{c} (complement) is at most countable. In the first case set $\mu(E)=0$, in the second case set $\mu(E)=1$. Show that \mathcal{A} is a sigma-algebra and μ a measure on \mathcal{A}.
6. Show that if f, g are integrable in \mathbb{R}^{n}, then $f(x-y) g(y)$ is integrable in $\mathbb{R}^{2 n}$.
7. Prove that if f is integrable on \mathbb{R}^{n}, real-valued and $\int_{E} f(x) d x \geq 0$ for every measurable set E, then $f(x) \geq 0$ a.e.x.
8. Let $f \in L^{1}(\mathbb{R})$ and let $t \in \mathbb{R}$. Prove that $f(t x)$ converges to $f(x)$ in the L^{1}-norm as $t \rightarrow 1$.
9. Let F be continuous on $[a, b]$. Assume that $F^{\prime}(x)$ exists for every $x \in(a, b)$, and that $\left|F^{\prime}(x)\right| \leq M$. Prove that F is absolutely continuous.

2 Complex, Functional, and Harmonic Analysis

10. Use the residue theorem to evaluate

$$
\int_{\mathbb{R}} e^{5 i x} \frac{\sin x}{x} d x .
$$

(Hint: $\sin x=1 /(2 i)\left(e^{i x}-e^{-i x}\right)$ and contour deformation.)
11. Let $f:\{z \in \mathbb{C}:|z|<1\} \rightarrow \mathbb{R}$ be analytic. Show that f is constant.
12. Assume f is entire, and there exists $C>0$ so that

$$
|f(z)| \leq C(|z|+1)^{5 / 2}
$$

for all complex z. Show that f is a polynomial. What is the largest degree that f may have?
13. Let f be integrable in \mathbb{R}^{n} and not identically zero. Let $M f(x)=\sup _{B} \int_{B}|f(y)| d y$ be the Hardy-Littlewood maximal function of f, where the supremum is taken over all balls B containing x.
(a) Show that $M f(x) \geq \frac{c}{|x|^{n}}$ for some $c>0$ and all $|x| \geq 1$.
(b) Is $M f(x)$ integrable in \mathbb{R}^{n} ? Justify your answer.
14. Show that the Hardy-Littlewood maximal operator (see previous problem) is bounded from L^{1} to weak L^{1}. You can do it in dimension $n=1$.
15. Let \star be the convolution operation, defined by $f \star g(x)=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y$. Use the Fourier transform to show that there is no function $g \in L^{1}\left(\mathbb{R}^{n}\right)$ with the property that $f \star g=f$ for all $f \in L^{1}\left(\mathbb{R}^{n}\right)$.
16. Let X and Y be normed spaces. Prove that if Y is Banach space, then so is $B(X, Y)$.
17. Let H be a Hilbert space.
(a) Define the absolute $|T|$ of an operator $T \in B(H)$.
(b) Prove that if $T \in B(H)$ with $|T|=\left|T^{*}\right|=I$, then T is unitary.
18. (a) State the Open Mapping Theorem.
(b) Let X and Y be Banach spaces and $T \in B(X, Y)$. Prove that if T is 1-1 and onto, then it is bounded below (i.e., $\inf _{\|x\|=1}\|T x\|>0$).

