Analysis Qualifying Exam August 2019

Submit six of the problems from part 1, and three of the problems from part 2. Start every problem on a new page, label your pages and write your student ID on each page.

1 Real Analysis

Throughout, m denotes Lebesgue measure. You may use without proof the Lebesgue dominated convergence theorem, monotone convergence theorem, and Fubini's theorem.

1. For a set $M \subseteq \mathbb{R}^n$ let $\rho_M(x) = \inf_{m \in M} ||x - m||$ where ||.|| is the Euclidean distance function. Show that for two closed, disjoint sets M, N the function

$$f(x) = \frac{\rho_M(x)}{\rho_M(x) + \rho_N(x)}$$

is continuous on \mathbb{R}^n , satisfies f(x) = 1 for $x \in N$ and f(x) = 0 for $x \in M$.

- 2. Let f_n be real-valued Borel measurable functions. Show that g defined by $g(x) = \sup_n f_n(x)$ is Borel measurable.
- 3. Suppose $f_n : X \to [0, \infty]$ is a sequence of measurable functions with $f_1 \ge f_2 \ge ... \ge 0$, $f_n \to f$ pointwise, and $f_1 \in L^1(X, \mu)$. Prove that

$$\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu.$$

Show that the conclusion fails if $f_1 \notin L^1(X, \mu)$.

4. Let $\mu = \mu_F$ be the signed measure on \mathbb{R} with distribution function

$$F(x) = \begin{cases} -e^x & \text{if } x < 0, \\ e^{-x} & \text{if } x \ge 0. \end{cases}$$

Find the total variation measure of μ .

- 5. Let X be an uncountable set and \mathcal{A} the collection of all sets $E \subseteq X$ such that either E or E^c (complement) is at most countable. In the first case set $\mu(E) = 0$, in the second case set $\mu(E) = 1$. Show that \mathcal{A} is a sigma-algebra and μ a measure on \mathcal{A} .
- 6. Show that if f, g are integrable in \mathbb{R}^n , then f(x-y)g(y) is integrable in \mathbb{R}^{2n} .
- 7. Prove that if f is integrable on \mathbb{R}^n , real-valued and $\int_E f(x) dx \ge 0$ for every measurable set E, then $f(x) \ge 0$ a.e.x.
- 8. Let $f \in L^1(\mathbb{R})$ and let $t \in \mathbb{R}$. Prove that f(tx) converges to f(x) in the L^1 -norm as $t \to 1$.
- 9. Let F be continuous on [a, b]. Assume that F'(x) exists for every $x \in (a, b)$, and that $|F'(x)| \leq M$. Prove that F is absolutely continuous.

2 Complex, Functional, and Harmonic Analysis

10. Use the residue theorem to evaluate

$$\int_{\mathbb{R}} e^{5ix} \frac{\sin x}{x} dx$$

(Hint: $\sin x = 1/(2i)(e^{ix} - e^{-ix})$ and contour deformation.)

- 11. Let $f: \{z \in \mathbb{C} : |z| < 1\} \to \mathbb{R}$ be analytic. Show that f is constant.
- 12. Assume f is entire, and there exists C > 0 so that

$$|f(z)| \le C(|z|+1)^{5/2}$$

for all complex z. Show that f is a polynomial. What is the largest degree that f may have?

- 13. Let f be integrable in \mathbb{R}^n and not identically zero. Let $Mf(x) = \sup_B \int_B |f(y)| dy$ be the Hardy-Littlewood maximal function of f, where the supremum is taken over all balls B containing x.
 - (a) Show that $Mf(x) \ge \frac{c}{|x|^n}$ for some c > 0 and all $|x| \ge 1$.
 - (b) Is Mf(x) integrable in \mathbb{R}^n ? Justify your answer.
- 14. Show that the Hardy-Littlewood maximal operator (see previous problem) is bounded from L^1 to $weakL^1$. You can do it in dimension n = 1.
- 15. Let \star be the convolution operation, defined by $f \star g(x) = \int_{\mathbb{R}^n} f(x-y)g(y)dy$. Use the Fourier transform to show that there is no function $g \in L^1(\mathbb{R}^n)$ with the property that $f \star g = f$ for all $f \in L^1(\mathbb{R}^n)$.
- 16. Let X and Y be normed spaces. Prove that if Y is Banach space, then so is B(X,Y).
- 17. Let H be a Hilbert space.
 - (a) Define the *absolute* |T| of an operator $T \in B(H)$.
 - (b) Prove that if $T \in B(H)$ with $|T| = |T^*| = I$, then T is unitary.
- 18. (a) State the Open Mapping Theorem.
 - (b) Let X and Y be Banach spaces and $T \in B(X, Y)$. Prove that if T is 1-1 and onto, then it is bounded below (i.e., $\inf_{\|x\|=1} \|Tx\| > 0$).