# Problems for Preliminary Exam <br> Applied Mathematics <br> May 2018 

## Part I <br> All problems have 10 points.

1. Consider

$$
\dot{x}=f(x),
$$

with $f \in C^{1}(\mathbb{R})$. Show that a fixed point $x_{0}$ is exponentially stable if $f^{\prime}\left(x_{0}\right)<0$ and unstable if $f^{\prime}\left(x_{0}\right)>0$.
2. Let $x^{(k)}=f\left(x, x^{(1)}, x^{(2)}, \ldots, x^{(k-1)}\right)$ be an autonomous equation (or system). Show that if $\phi(t)$ is a solution then so is $\phi\left(t-t_{0}\right)$, where $t_{0} \in \mathbb{R}$.
3. Show that $\Phi(t, x)=e^{t}(1+x)-1$, is a flow. Find an autonomous system corresponding to this flow.
4. Consider the linear autonomous systems

$$
\text { (a) } \quad \dot{x}=-x, \quad \dot{y}=-2 y, \quad \text { and } \quad \text { (b) } \quad \dot{x}=4 y, \quad \dot{y}=-x .
$$

Without using any Lyapunov function, show that the equilibrium point $(0,0)$ of system (a) is asymptotically stable, but that the critical point $(0,0)$ of system (b) is stable but not asymptotically stable.
5. A function $A: \mathbb{R} \rightarrow \mathrm{GL}(n ; \mathbb{C})$ is called a one-parameter subgroup of $\mathrm{GL}(n ; \mathbb{C})$ if

- $A$ is continuous,
- $A(0)=I$,
- $A(t+s)=A(t) A(s)$, for all $t, s \in \mathbb{R}$.

If $A$ is a one-parameter subgroup of $\mathrm{GL}(n ; \mathbb{C})$; show that there exists a unique $n \times n$ complex matrix $X$ such that

$$
A(t)=e^{t X}
$$

[Notation: GL $(n ; \mathbb{C})$, the general linear group of degree $n$, is the set of $n \times n$ complex invertible matrices, together with the operation of ordinary matrix multiplication.]

## Part II <br> All problems have 10 points.

1. Compute the solution to

$$
u u_{x}+y u_{y}=x, \quad u(x, 1)=2 x
$$

Clearly state for which $(x, y)$ the solution is defined.
2. Consider the following PDE

$$
\Delta u-q(x) u=0, \quad q(x) \geq 0, \quad x \in \Omega,
$$

where $\Omega$ is a bounded connected region with a sufficiently nice boundary. Establish the uniqueness theorem for this problem for the Dirichlet boundary conditions

$$
u(x)=g(x), \quad x \in \partial \Omega
$$

3. Let $L$ be a linear differential operator with $\mathcal{C}^{\infty}$ coefficients. Write down a definition of a weak solution to the differential equation

$$
L u=f .
$$

Using your definition show that $u(t, x)=H(x-t)+H(x+t)$ (here $H$ is the Heaviside function) is a weak solution to the one-dimensional wave equation $u_{t t}=u_{x x}$ in all $\mathbb{R}^{2}$.
(Hint: using new coordinates $\xi=x+t, \eta=x-t$ or similar may help.)
4. Which problem is called well-posed?

Show that the initial-boundary value problem for the Laplace equation:

$$
u_{x x}+u_{y y}=0, \quad y>0, \quad 0<x<\pi,
$$

with the following boundary conditions

$$
u(0, y)=u(\pi, y)=0, \quad y>0
$$

and initial conditions

$$
u(x, 0)=f(x), \quad u_{y}(x, 0)=g(x), \quad x \in[0, \pi],
$$

is not well-posed (i.e., it is ill-posed).
(Hint: take $f(x)=0$ and $g(x)=e^{-\sqrt{n}} \sin n x$, where $n$ is an odd integer.)
5. Solve the following initial-boundary value problem for the heat equation

$$
u_{t}=\alpha^{2} u_{x x}, \quad x>0, \quad t>0
$$

with the initial condition $u(x, 0)=g(x), x>0$ and the boundary condition $u(0, t)=0$ for $t>0$. Here $g$ is a continuous and bounded function with $g(0)=0$.

