- 1. a) Let $\{f_n\}$ be a sequence of real-valued functions defined on a subset E of the real line. Give the definition of uniform convergence of the sequence $\{f_n\}$ to a function f.
 - b) Let $\{f_n\}$ be a sequence of continuous real-valued functions defined on the interval [0, 1]. Prove that if $\{f_n\}$ converges uniformly to f on the interval [0, 1], then f is continuous on [0, 1].
- 2. a) For a sequence $\{a_n\}$ of real numbers, give a definition of $\limsup a_n$.
 - b) Let \mathcal{A} be a σ -algebra of subsets of the real line. Let $\{f_n\}$ be a sequence of real-valued functions on the real line. Suppose that for each n the set $E_n = \{x \in \mathbf{R} : f_n(x) > 0\}$ belongs to the σ -algebra \mathcal{A} . Denote $f(x) = \limsup f_n(x)$. Show that the set $E = \{x \in \mathbf{R} : f(x) > 0\}$ belongs to the σ -algebra \mathcal{A} .
- 3. Let *E* be a measurable set, and $mE < \infty$. Prove that, for every $\varepsilon > 0$, there is an open set *O* such that $E \subset O$ and $m(O \setminus E) < \varepsilon$. Here *m* denotes the Lebesgue measure on **R**.
- 4. Let f and g be measurable real-valued functions on a measurable set E. Define a function h on E by setting $h(x) = \max\{f(x), g(x)\}$ for all $x \in E$. Prove that h is measurable.
- 5. a) Give the definitions of the spaces $L^p[0, 1], 1 \le p \le \infty$.
 - b) Give an example of a sequence of integrable functions on [0, 1] which is convergent in L^1 -norm, but is not convergent almost everywhere (with respect to Lebesgue measure).
- 6. a) State monotone convergence theorem.b) Is monotonicity necessary? Justify your answer (with an example).
- 7. a) Let C be the Cantor ternary set.
 - a) Show that for every open set $O \subset \mathbf{R}$, either $O \cap C$ is empty or $O \cap C$ is uncountable.
 - b) Show that m(C) = 0, where m is the Lebesgue measure.
- 8. a) Define the functions of bounded variation on [0, 1].
 - b) If $f : [0, 1] \to \mathbf{R}$ is a function of bounded variation, is it true that $f(x) = \int_0^x f'(t)dt$ (here f' is the a.e. derivative of f)? Why? If your answer is negative, for what type of functions the answer is affirmative? (Name only.)
- 9. a) State the definitions of sets of first and second category in a metric space (M, d).
 - b) Give an example of a set of first category which is uncountable.
 - c) Are there sets of first category in [0, 1] that have measure 1? (Yes or No.) No justification is necessary.
- 10. a) Show that if $f:[0,1] \to \mathbf{R}$ is continuous, then it is uniformly continuous.
 - b) Prove or disprove (by a counterexample): if $A \subset [0, 1]$ is closed, then f(A) is also closed.