ANALYSIS EXAM

1. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of real numbers with $a_{n}>0, b_{n}>0$ for all $n \geq 1$. Show that $\lim \sup _{n}\left(a_{n} b_{n}\right) \leq\left(\lim \sup _{n} a_{n}\right)\left(\lim \sup _{n} b_{n}\right)$, provided that the product on the right hand side is not of the form $0 \times \infty$.
2. a) Give a definition of a measurable function.
b) Let f be a real valued function on the real line. Which of the following statements are true? Justify your answers using the definition that you gave in part a).
(i) if f is measurable, then f^{2} is measurable.
(ii) if f^{2} is measurable, then f is measurable.
3. Let f_{1}, f_{2}, \ldots be a sequence of nonnegative integrable functions on $[0,1]$. Suppose that $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}=0$. Denote $A_{n}=\left\{x \in[0,1]: f_{n}(x) \geq 1\right\}$, and let $a_{n}=m A_{n}$ (here m, as usual denotes the Lebesgue measure). Show that $\lim _{n \rightarrow \infty} a_{n}=0$.
4. a) State the Monotone Convergence Theorem. Is the monotonicity necessary, Why?
b) Let $\left\{f_{n}\right\}$ be a sequence of integrable functions on $[0,1]$ such that $0 \leq f_{n+1} \leq f_{n}$ a.e. for all n. Show that $f_{n} \rightarrow 0$ iff $\int f_{n} \rightarrow 0$.
5. a) Give a definition of a function of bounded variation on the interval $[a, b]$.
b) Show that if f and g are functions of bounded variation on $[a, b]$, then their product $f \cdot g$ is also of bounded variation.
6. a) Give the definition of an absolutely continuous function.
b) A function f on an interval $[a, b]$ is said to satisfy the Lipschitz condition if there is $M>0$ such that $|f(s)-f(t)| \leq M|s-t|$ for all $s, t \in[a, b]$. Show that an absolutely continuous function satisfies the Lipschitz condition if and only if $\left|f^{\prime}(x)\right|$ is bounded.
7. a) Prove that if $1 \leq p<q$, then $L_{q}[0,1] \subset L_{p}[0,1]$.
b) Show by an example that the inclusion $L_{2}[0,1] \subset L_{1}[0,1]$ is proper.
8. a) Give the definition of a separable metric space.
b) Prove that the space $L^{\infty}[0,1]$ is not separable.
9. a) Give the definition of a set of first category in a metric space.
b) Construct an example of a set of first category on the interval $[0,1]$ (with usual metric) whose Lebesgue measure is 1 .
10. a) Give a definition of a real valued uniformly continuous function on a metric space (X, d).
b) Show that if a function $f:[0,1] \rightarrow \mathbf{R}$ is continuous, then it is uniformly continuous.
