ANALYSIS EXAM May 2004

- 1. Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers with $a_n > 0$, $b_n > 0$ for all $n \ge 1$. Show that $\limsup_n (a_n b_n) \le (\limsup_n a_n)(\limsup_n b_n)$, provided that the product on the right hand side is not of the form $0 \times \infty$.
- 2. a) Give a definition of a measurable function.
 - b) Let f be a real valued function on the real line. Which of the following statements are true? Justify your answers using the definition that you gave in part a).
 (i) if f is measurable, then f² is measurable.
 (ii) if f² is measurable, then f is measurable.
- 3. Let f_1, f_2, \ldots be a sequence of nonnegative integrable functions on [0, 1]. Suppose that $\lim_{n \to \infty} \int_0^1 f_n = 0$. Denote $A_n = \{x \in [0, 1] : f_n(x) \ge 1\}$, and let $a_n = mA_n$ (here m, as usual denotes the Lebesgue measure). Show that $\lim_{n \to \infty} a_n = 0$.
- 4. a) State the Monotone Convergence Theorem. Is the monotonicity necessary, Why?
 b) Let {f_n} be a sequence of integrable functions on [0, 1] such that 0 ≤ f_{n+1} ≤ f_n a.e. for all n. Show that f_n → 0 iff ∫ f_n → 0.
- 5. a) Give a definition of a function of bounded variation on the interval [a, b].
 - b) Show that if f and g are functions of bounded variation on [a, b], then their product $f \cdot g$ is also of bounded variation.
- 6. a) Give the definition of an absolutely continuous function.
 - b) A function f on an interval [a, b] is said to satisfy the Lipschitz condition if there is M > 0 such that $|f(s) f(t)| \leq M|s t|$ for all $s, t \in [a, b]$. Show that an absolutely continuous function satisfies the Lipschitz condition if and only if |f'(x)| is bounded.
- 7. a) Prove that if $1 \le p < q$, then $L_q[0,1] \subset L_p[0,1]$. b) Show by an example that the inclusion $L_2[0,1] \subset L_1[0,1]$ is proper.
- 8. a) Give the definition of a separable metric space.
 b) Prove that the space L[∞][0, 1] is **not** separable.
- 9. a) Give the definition of a set of first category in a metric space.
 - b) Construct an example of a set of first category on the interval [0, 1] (with usual metric) whose Lebesgue measure is 1.
- 10. a) Give a definition of a real valued uniformly continuous function on a metric space (X, d).
 - b) Show that if a function $f:[0,1] \to \mathbf{R}$ is continuous, then it is uniformly continuous.