Analysis Preliminary Examination
 August 2016

Submit six of the problems from part 1, and three of the problems from part 2. Start every problem on a new page, label your pages and write your student ID on each page.

Part 1: Real Analysis

Lebesgue measure is denoted m and unless stated otherwise (X, \mathcal{M}, μ) is a generic measure space.

1. Let A be an algebra on X. Prove that A is a σ-algebra if and only if it closed for countable increasing sequences (i.e., if $E_{i} \in A$ and $E_{1} \subseteq E_{2} \subseteq E_{3} \subseteq \cdots$, then $\left.\cup_{n=1}^{\infty} E_{i} \in A\right)$.
2. Let μ^{*} be an outer measure, let H be a μ^{*}-measurable set, and let μ_{0}^{*} be the restriction of μ^{*} to $\mathcal{P}(H)$.
(a) Check that μ_{0}^{*} is an outer measure on H.
(b) Prove that $A \subseteq H$ is μ_{0}^{*}-measurable if and only if A is μ^{*}-measurable.
(c) If H is not assumed to be μ^{*}-measurable, do (a) and (b) still hold?
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Prove or give a counterexample for each one of the following statements.
(a) If f is a (Lebesgue) measurable function, then f^{+}and f^{-}are measurable.
(b) If f and $|f|$ are measurable, then f^{+}and f^{-}are measurable.
(c) If f is not measurable, then neither f^{+}nor f^{-}are measurable.
4. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X)<\infty$, and let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of measurable functions. Prove that if f_{n} converges to 0 almost everywhere, then f_{n} converges to 0 in measure. Show with an example that the hypothesis $\mu(X)<\infty$ is necessary.
5. Let $f_{n}:[1, \infty) \rightarrow \mathbb{R}$ be defined by

$$
f_{n}(x)=\frac{1}{x} \chi_{[n, \infty)}(x) .
$$

Study the pointwise, uniform, and L^{1} convergence of the sequence $\left\{f_{n}\right\}$. Specify the theorems you use.
6. Check that the hypotheses of Fubini's theorem hold, and use the theorem to compute the following integral

$$
\int_{0}^{\pi / 2} \int_{y}^{\pi / 2} y \frac{\sin x}{x} d x d y
$$

7. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called Lipschitz if there exists a constant $C>0$ such that, for every $x, y \in \mathbb{R},|f(x)-f(y)| \leq C|x-y|$.
(a) Prove that every Lipschitz function is absolutely continuous.
(b) Give an example of an absolutely continuous function that is not Lipschitz.
8. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two sequences of positive real numbers such that $\inf a_{n}=0$ and $\inf b_{n}>0$. Let μ, ν be the measures on $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ defined by $\mu(n)=a_{n}$, $\nu(n)=b_{n}$.
(a) Show that μ is absolutely continuous with respect to ν, and that the hypotheses of the Radon-Nikodym Theorem are satisfied.
(b) Find $\frac{d \mu}{d \nu}$.

Part 2: Complex and Functional Analysis

9. Let (X, \mathcal{M}, μ) be a finite measure space and consider the associated $L_{p}(X, \mathcal{M}, \mu)$ space.
(i) State Minkowski's Inequality in $L_{p}, 1 \leq p<\infty$.
(ii) Using Hölder's Inequality, Prove Minkowski's Inequality in $L_{p}, 1 \leq p<\infty$.
10. Let $\left(X,\| \|_{1}\right)$ and $\left(Y,\| \|_{2}\right)$ be normed spaces and let $B(X, Y)$ denote the space of bounded linear operators from X to Y with the usual norm $\|T\|=\sup _{\|x\|_{1}}\|T x\|_{2}$. Prove that $B(X, Y)$ is a Banach space if $\left(Y,\| \|_{2}\right)$ is a Banach space.
11. Let H be a Hilbert space and $M \subset H$ be a closed subspace.
(i) Define the orthogonal complement M^{\perp} of M (in H).
(ii) Prove that $M=M^{\perp \perp}$.
12. Let X be a complete metric space and $S \subset X$ be a dense set. Prove that if $S=\bigcap_{n} A_{n}$, where each $A_{n} \subset X$ is open, then $X \backslash S$ is of first category.
13. (a) Let G be the open unit disk. If $u: G \rightarrow \mathbb{R}$ is harmonic, show that u has a harmonic conjugate.
(b) Find an example that illustrates that the statement is false if G is the punctured unit disk.
14. Let G be a region and suppose that $f: G \rightarrow \mathbb{C}$ is analytic such that $f(G)$ is a subset of a circle. Show that f is constant.
15. Give the power series expansion of $\log (\mathrm{z})$ about $\mathrm{z}=\mathrm{i}$ and determine its radius of convergence.
16. Let G be a region, and assume that f and g are two analytic functions on G with $f(z) g(z)=0$ for all $z \in G$. Show that either f or g is the zero function.
