Analysis Preliminary Examination August 2016

Submit six of the problems from part 1, and three of the problems from part 2. Start every problem on a new page, label your pages and write your student ID on each page.

Part 1: Real Analysis

Lebesgue measure is denoted m and unless stated otherwise (X, \mathcal{M}, μ) is a generic measure space.

- 1. Let A be an algebra on X. Prove that A is a σ -algebra if and only if it is closed for countable increasing sequences (*i.e.*, if $E_i \in A$ and $E_1 \subseteq E_2 \subseteq E_3 \subseteq \cdots$, then $\bigcup_{n=1}^{\infty} E_i \in A$).
- 2. Let μ^* be an outer measure, let H be a μ^* -measurable set, and let μ_0^* be the restriction of μ^* to $\mathcal{P}(H)$.
 - (a) Check that μ_0^* is an outer measure on *H*.
 - (b) Prove that $A \subseteq H$ is μ_0^* -measurable if and only if A is μ^* -measurable.
 - (c) If H is not assumed to be μ^* -measurable, do (a) and (b) still hold?
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Prove or give a counterexample for each one of the following statements.
 - (a) If f is a (Lebesgue) measurable function, then f^+ and f^- are measurable.
 - (b) If f and |f| are measurable, then f^+ and f^- are measurable.
 - (c) If f is not measurable, then neither f^+ nor f^- are measurable.
- 4. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) < \infty$, and let $\{f_n\}_{n=1}^{\infty}$ be a sequence of measurable functions. Prove that if f_n converges to 0 almost everywhere, then f_n converges to 0 in measure. Show with an example that the hypothesis $\mu(X) < \infty$ is necessary.
- 5. Let $f_n: [1,\infty) \to \mathbb{R}$ be defined by

$$f_n(x) = \frac{1}{x}\chi_{[n,\infty)}(x).$$

Study the pointwise, uniform, and L^1 convergence of the sequence $\{f_n\}$. Specify the theorems you use.

6. Check that the hypotheses of Fubini's theorem hold, and use the theorem to compute the following integral

$$\int_0^{\pi/2} \int_y^{\pi/2} y \frac{\sin x}{x} dx dy$$

7. A function $f : \mathbb{R} \to \mathbb{R}$ is called Lipschitz if there exists a constant C > 0 such that, for every $x, y \in \mathbb{R}$, $|f(x) - f(y)| \le C|x - y|$.

- (a) Prove that every Lipschitz function is absolutely continuous.
- (b) Give an example of an absolutely continuous function that is not Lipschitz.
- 8. Let $\{a_n\}$ and $\{b_n\}$ be two sequences of positive real numbers such that $\inf a_n = 0$ and $\inf b_n > 0$. Let μ, ν be the measures on $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ defined by $\mu(n) = a_n$, $\nu(n) = b_n$.
 - (a) Show that μ is absolutely continuous with respect to ν , and that the hypotheses of the Radon-Nikodym Theorem are satisfied.
 - (b) Find $\frac{d\mu}{d\nu}$.

Part 2: Complex and Functional Analysis

- 9. Let (X, \mathcal{M}, μ) be a finite measure space and consider the associated $L_p(X, \mathcal{M}, \mu)$ -space.
 - (i) State Minkowski's Inequality in L_p , $1 \le p < \infty$.
 - (ii) Using Hölder's Inequality, Prove Minkowski's Inequality in L_p , $1 \le p < \infty$.
- 10. Let $(X, || ||_1)$ and $(Y, || ||_2)$ be normed spaces and let B(X, Y) denote the space of bounded linear operators from X to Y with the usual norm $||T|| = \sup_{||x||_1} ||Tx||_2$. Prove that B(X, Y) is a Banach space if $(Y, || ||_2)$ is a Banach space.
- 11. Let H be a Hilbert space and $M \subset H$ be a closed subspace.
 - (i) Define the orthogonal complement M^{\perp} of M (in H).
 - (ii) Prove that $M = M^{\perp \perp}$.
- 12. Let X be a complete metric space and $S \subset X$ be a dense set. Prove that if $S = \bigcap_n A_n$, where each $A_n \subset X$ is open, then $X \setminus S$ is of first category.
- 13. (a) Let G be the open unit disk. If $u: G \to \mathbb{R}$ is harmonic, show that u has a harmonic conjugate.
 - (b) Find an example that illustrates that the statement is false if G is the punctured unit disk.
- 14. Let G be a region and suppose that $f : G \to \mathbb{C}$ is analytic such that f(G) is a subset of a circle. Show that f is constant.
- 15. Give the power series expansion of $\log(z)$ about z=i and determine its radius of convergence.
- 16. Let G be a region, and assume that f and g are two analytic functions on G with f(z)g(z) = 0 for all $z \in G$. Show that either f or g is the zero function.