Analysis Preliminary Examination - September 2013

Part 1: Measure Theory
Provide solutions to 6 of the 10 problems in the first part.

I. 1 Let (X, M, μ) be a measure space and $f: X \rightarrow \mathbb{R}$ a measurable function, finite at every $x \in X$. Let $G_{f}=\{(x, t) \in X \times \mathbb{R}: t=f(x)\}$ be the graph of f. If μ is σ-finite, prove that G_{f} has measure zero with the product measure $\mu \times m$ (Hint: use Fubini).
I. 2 Let $X=[0,1], M=B_{[0,1]}, m$ the Lebesgue measure on M and μ the counting measure on M. Show that $m \ll \mu$, but that there is no function f such that $d m=f d \mu$. Does this contradict the Radon-Nikodym theorem?
I. 3 (a) Let $f_{n}:[1, \infty) \rightarrow \mathbb{R}$ be a function defined by $f_{n}(x)=\frac{1}{x} \chi_{[n, \infty)}(x)$. Show that the sequence $\left\{f_{n}\right\}$ converges to zero uniformly on $[1, \infty)$.
(b) State Fatou's Lemma.
(c) Apply Fatou's lemma to the sequence from part (a).
I. 4 Let $f_{n}: X \rightarrow \mathbb{R}$ be measurable, bounded functions, such that for every $n \in \mathbb{R}, x \in X$, $f_{n}(x) \geq f_{n+1}(x)$, and there is a measurable function $f: X \rightarrow \mathbb{R}$ such that $\lim f_{n}(x)=$ $f(x)$ pointwise. If $\int f_{k} d \mu<\infty$ for some $k \in \mathbb{N}$, prove that

$$
\lim _{n \rightarrow \infty} \int f_{n} d \mu=\int f d \mu
$$

I. 5 Prove the following:
(a) If f is monotonic, then f is Lebesgue measurable.
(b) If f is continuous and g is Lebesgue measurable, then $f \circ g$ is Lebesgue measurable.
(c) If f is continuous and g is Lebesgue measurable, is $g \circ f$ Lebesgue measurable? Justify your answer.
I. 6 Let $f(x)=\int_{0}^{\infty} e^{-x t}\left(t^{-3} \sin ^{3} t\right) d t$. Show that
(a) $f(x)$ is well-defined for each $x \in[0, \infty)$.
(b) $f(x)$ is continuous on $[0, \infty)$.
I. 7 Suppose that f is a continuous real-valued function of bounded variation on $[0,1]$ and that, for each $\varepsilon \in(0,1), f$ is absolutely continuous on $[\varepsilon, 1]$. Must f necessarily be absolutely continuous on $[0,1]$? Justify your answer.
I. 8 Suppose $f \in L^{1}[0,1]$ satisfies

$$
\int_{E}|f| \leq(m(E))^{2}
$$

for every measurable set $E \subseteq[0,1]$. Show that f is a.e. equal to zero. (Hint: Lebesgue differentiation theorem.)
I. 9 Prove or give a counterexample: Every dense open subset of $(0,1)$ has Lebesgue measure one.
I. 10 Let $f \in L^{1}(\mathbb{R})$ such that $f(x)=0$ for $|x| \geq 1$ (Is this condition necessary?) Prove that f_{n} defined by

$$
f_{n}(x)=f\left(x+\frac{1}{n}\right)
$$

converges to f in $L^{1}(\mathbb{R})$.

Part 2:Complex and Functional Analysis

Provide solutions to 3 of the 6 problems of part 2 .
II. 1 Let $G \subseteq \mathbb{C}$ be a region. If $f: G \rightarrow \mathbb{C}$ is analytic except for poles, show that the poles of f cannot have a limit point in G.
II. 2 An analytic function has a singularity (removable, pole, essential) at infinity, if $f(1 / z)$ has the same type of singularity at the origin. Show that an entire function that has a removable singularity at infinity is constant.
II. 3 Prove that there is no branch of the logarithm defined on $\mathbb{C} \backslash\{0\}$.
II. 4 A normed space $(X,\|\cdot\|)$ is called strictly convex if whenever $x, y \in X$ verify

$$
\|x\|=\|y\|=\frac{1}{2}\|x+y\|,
$$

then it follows that $x=y$.
(a) Prove that a Hilbert space is always strictly convex.
(b) Give an example of a Banach space that is not strictly convex (Hint: It is enough to consider \mathbb{R}^{2} with an appropriate norm).
II. 5 Let X, Z be Banach spaces and Y a normed space over \mathbb{R}. Let $T: X \rightarrow Y$ be a bounded linear operator, and $S: Y \rightarrow Z$ a closed linear operator. Prove that $S \circ T$ is a bounded operator.
II. 6 Let M be a closed subspace of the Banach space X. Let $x_{0} \in X$ be such that the distance from x_{0} to M is positive (the distance is defined by $d\left(x_{0}, M\right)=\inf \left\{\left\|x_{0}-y\right\|: y \in M\right\}$). Prove that there exists a functional $F \in X^{*}$ with the following properties:
(a) $F(x)=0$ for every $x \in M$.
(b) $F\left(x_{0}\right)=d\left(x_{0}, M\right)$.
(c) $\|F\|=1$

