Analysis Qualifying Exam, January 2015

Submit six of the problems from part 1, and three of the problems from part 2. Start every problem on a new page, label your pages and write your student ID on each page.

Part 1 - Real Analysis

Lebesgue measure is denoted by m.

1. a) State the definition of Lebesgue outer measure.

- b) Prove that Lebesgue outer measure is translation invariant; i.e., $m^*(A) = m^*(\alpha + A), \forall \alpha \in \mathbb{R}$ and $\forall A \subset \mathbb{R}$ measurable.
- **2.** Let $A = \mathbb{Q}^c \cap [0, 1]$.
 - a) Is A Lebesgue measurable? If so, what is m(A)?
 - b) Is there a closed set F of positive measure such that $F \subset A$? Justify your answer.
- **3.** a) State the definition of a Lebesgue measurable function.
 - b) For a function $f : \mathbb{R} \to \mathbb{R}$ which of the following is true (justify your answers): (i) if |f| is measurable, then f is also measurable. (ii) if f is measurable, then |f| is also measurable.
- 4. a) State Chebychev's Inequality.
 - b) Let $f: [0,1] \to \mathbb{R}$ be a measurable function. Prove that $\int_{[0,1]} f dm = 0$ iff f = 0 a.e. on [0,1].
- **5.** a) State the definition of a function of bounded variation $f : [a, b] \to \mathbb{R}$.
 - b) Let $f, g: [a, b] \to \mathbb{R}$ be two functions of bounded variation. Is fg a function of bounded variation? How about the function |f|? Justify your answers.
- 6. a) Give an example of a function of bounded variation which is not absolutely continuous.
 - b) Let $f : [0,1] \to \mathbb{R}$ be an integrable function and define $F : [0,1] \to \mathbb{R}$ by $F(x) = \int_{[0,x]} f(t) dm$ for all $x \in [0,1]$. Prove that F is absolutely continuous on [0,1].
- 7. Let (X, \mathcal{A}, μ) be a measure space.
 - a) If $f: X \to \mathbb{R}$ is a non-negative \mathcal{A} -measurable function, show that the set function $\nu(E) := \int_E f d\mu$ is a measure on (X, \mathcal{A}) .
 - b) Is $\nu \ll \mu$? Justify your answer.
 - c) If $g: X \to \mathbb{R}$ is a \mathcal{A} -measurable function, show that

$$\int_X gd\nu = \int_X fgd\mu.$$

8. Consider the measure spaces $([0,1], \mathcal{F}, m)$ and $([0,1], \mathcal{P}([0,1]), c)$, where c is the counting measure. For $E = \{(x, y) : x = y\} \in \mathcal{F} \times \mathcal{P}([0,1])$, calculate the iterated integrals

$$\int_{[0,1]} \left[\int_{[0,1]} \chi_E(x,y) dc \right] dm \text{ and } \int_{[0,1]} \left[\int_{[0,1]} \chi_E(x,y) dm \right] dc$$

and the double integral

$$\int_{[0,1]\times[0,1]} \chi_E(x,y) d(m\times c).$$

Do your answers contradict Fubini-Tonelli Theorem? Explain.

Part 2 - Complex and Functional Analysis

1. Let u and v be real valued harmonic functions on a domain Ω . If u and v agree on a set with a limit point in Ω , does it follow that u = v on all of Ω ? Explain.

2. Let f, g be analytic functions in a neighborhood of a point a. Assume that g has a simple zero at a. Find a formula for the residue of $\frac{f(z)}{g(z)^2}$ at a in terms of f(a) and the derivatives of f and g at a.

3. Let $\log z$ denote the branch of a complex logarithm with branch cut along the negative imaginary axis such that $-\frac{\pi}{2} < Im \log z < \frac{3\pi}{2}$. Let C_r denote the curve parametrized by $z(t) = re^{it}, 0 \le t \le \pi$. Prove that

$$\int_{C_r} \frac{\log z}{(z^2+1)^2} \, dz$$

tends to zero as r tends to infinity AND as r tends to zero. Use this to compute

$$\int_0^\infty \frac{\log x}{(x^2+1)^2} \, dx$$

4. Find a sequence of one-to-one conformal mappings from the half disk $\{z \in \mathbb{C} : |z| \le 1, Imz \ge 0\}$ to the unit disk $\{z \in \mathbb{C} : |z| \le 1\}$.

5. Let *H* be a Hilbert space. Let $x \in H$ such that $||x|| \leq 1$, and let $\{x_n\}$ be a sequence in *H* such that $||x_n|| \leq 1$ for every *n*. Assume that $\lim_{n\to\infty} ||x_n - x|| = 2$. Is it true that x_n must converge to x? Justify your answer.

6. Let X be a normed space, and T be a bounded operator on X. Prove that

$$||T|| = \sup\{|f(T(x))| : x \in X, ||x|| = 1; f \in X^*, ||f|| = 1\}.$$

7. Let $s \in (0,3/4)$ be a fixed real number. For $f \in L^4(0,1)$ and $x \in (0,1)$, we define the operator T by

$$Tf(x) = \int_0^x \frac{f(y)}{(x-y)^s} dy.$$

Prove that T is a bounded operator from $L^4(0,1)$ to $L^{\infty}(0,1)$.

8. Let X, Y, Z be three Banach spaces over the same scalar field. Let $T: X \to Y$ be a bounded operator, and $S: Y \to Z$ be a closed linear operator. Prove that $S \circ T$ is a bounded operator from X to Z.