Analysis Qualifying Exam, January 2015

Submit six of the problems from part 1, and three of the problems from part 2. Start every problem on a new page, label your pages and write your student ID on each page.

Part 1 - Real Analysis

Lebesgue measure is denoted by m.

1. a) State the definition of Lebesgue outer measure.
b) Prove that Lebesgue outer measure is translation invariant; i.e., $m^{*}(A)=m^{*}(\alpha+A), \forall \alpha \in$ \mathbb{R} and $\forall A \subset \mathbb{R}$ measurable.
2. Let $A=\mathbb{Q}^{c} \cap[0,1]$.
a) Is A Lebesgue measurable? If so, what is $m(A)$?
b) Is there a closed set F of positive measure such that $F \subset A$? Justify your answer.
3. a) State the definition of a Lebesgue measurable function.
b) For a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which of the following is true (justify your answers): (i) if $|f|$ is measurable, then f is also measurable. (ii) if f is measurable, then $|f|$ is also measurable.
4. a) State Chebychev's Inequality.
b) Let $f:[0,1] \rightarrow \mathbb{R}$ be a measurable function. Prove that $\int_{[0,1]} f d m=0$ iff $f=0$ a.e. on $[0,1]$.
5. a) State the definition of a function of bounded variation $f:[a, b] \rightarrow \mathbb{R}$.
b) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be two functions of bounded variation. Is $f g$ a function of bounded variation? How about the function $|f|$? Justify your answers.
6. a) Give an example of a function of bounded variation which is not absolutely continuous.
b) Let $f:[0,1] \rightarrow \mathbb{R}$ be an integrable function and define $F:[0,1] \rightarrow \mathbb{R}$ by $F(x)=$ $\int_{[0, x]} f(t) d m$ for all $x \in[0,1]$. Prove that F is absolutely continuous on $[0,1]$.
7. Let (X, \mathcal{A}, μ) be a measure space.
a) If $f: X \rightarrow \mathbb{R}$ is a non-negative \mathcal{A}-measurable function, show that the set function $\nu(E):=$ $\int_{E} f d \mu$ is a measure on (X, \mathcal{A}).
b) Is $\nu \ll \mu$? Justify your answer.
c) If $g: X \rightarrow \mathbb{R}$ is a \mathcal{A}-measurable function, show that

$$
\int_{X} g d \nu=\int_{X} f g d \mu
$$

8. Consider the measure spaces $([0,1], \mathcal{F}, m)$ and $([0,1], \mathcal{P}([0,1]), c)$, where c is the counting measure. For $E=\{(x, y): x=y\} \in \mathcal{F} \times \mathcal{P}([0,1])$, calculate the iterated integrals

$$
\int_{[0,1]}\left[\int_{[0,1]} \chi_{E}(x, y) d c\right] d m \text { and } \int_{[0,1]}\left[\int_{[0,1]} \chi_{E}(x, y) d m\right] d c
$$

and the double integral

$$
\int_{[0,1] \times[0,1]} \chi_{E}(x, y) d(m \times c) .
$$

Do your answers contradict Fubini-Tonelli Theorem? Explain.

Part 2 - Complex and Functional Analysis

1. Let u and v be real valued harmonic functions on a domain Ω. If u and v agree on a set with a limit point in Ω, does it follow that $u=v$ on all of Ω ? Explain.
2. Let f, g be analytic functions in a neighborhood of a point a. Assume that g has a simple zero at a. Find a formula for the residue of $\frac{f(z)}{g(z)^{2}}$ at a in terms of $f(a)$ and the derivatives of f and g at a.
3. Let $\log z$ denote the branch of a complex logarithm with branch cut along the negative imaginary axis such that $-\frac{\pi}{2}<\operatorname{Im} \log z<\frac{3 \pi}{2}$. Let C_{r} denote the curve parametrized by $z(t)=r e^{i t}, 0 \leq t \leq \pi$. Prove that

$$
\int_{C_{r}} \frac{\log z}{\left(z^{2}+1\right)^{2}} d z
$$

tends to zero as r tends to infinity AND as r tends to zero. Use this to compute

$$
\int_{0}^{\infty} \frac{\log x}{\left(x^{2}+1\right)^{2}} d x
$$

4. Find a sequence of one-to-one conformal mappings from the half disk $\{z \in \mathbb{C}:|z| \leq 1, \operatorname{Im} z \geq 0\}$ to the unit disk $\{z \in \mathbb{C}:|z| \leq 1\}$.
5. Let H be a Hilbert space. Let $x \in H$ such that $\|x\| \leq 1$, and let $\left\{x_{n}\right\}$ be a sequence in H such that $\left\|x_{n}\right\| \leq 1$ for every n. Assume that $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=2$. Is it true that x_{n} must converge to x ? Justify your answer.
6. Let X be a normed space, and T be a bounded operator on X. Prove that

$$
\|T\|=\sup \left\{|f(T(x))|: x \in X,\|x\|=1 ; f \in X^{*},\|f\|=1\right\} .
$$

7. Let $s \in(0,3 / 4)$ be a fixed real number. For $f \in L^{4}(0,1)$ and $x \in(0,1)$, we define the operator T by

$$
T f(x)=\int_{0}^{x} \frac{f(y)}{(x-y)^{s}} d y
$$

Prove that T is a bounded operator from $L^{4}(0,1)$ to $L^{\infty}(0,1)$.
8. Let X, Y, Z be three Banach spaces over the same scalar field. Let $T: X \rightarrow Y$ be a bounded operator, and $S: Y \rightarrow Z$ be a closed linear operator. Prove that $S \circ T$ is a bounded operator from X to Z.

