Analysis Preliminary Examination
 January 2011

Unless a problem states otherwise, \mathbb{R} is endowed with Lebesgue measure, which will be denoted by m. Please justify your answers.

1. a) Give the definition of the (Lebesgue) outer measure $m^{*}(A)$ of a set $A \subset \mathbb{R}$.
b) Prove that $m^{*}(\mathbb{Q})=0$. Is \mathbb{Q} is measurable? Why?
2. A set function μ on a σ-algebra \mathcal{A} of subsets of a set X is called continuous from above if $\left\{E_{n}\right\} \subset \mathcal{A}$ with $E_{n} \downarrow$, then $\mu\left(\cup_{n}\right)=\lim _{n} \mu\left(E_{n}\right)$. Let μ be a finitely additive measure on a measurable space (X, \mathcal{A}). When $\mu(X)<\infty$, show that μ is a measure iff it is continuous from above.
3. a) Give the defintion of a measurable function $f: E \rightarrow \mathbb{R}$, where E is a measurable subset of \mathbb{R}.
b) Prove that if f and g are measurable on E, then so is $f+g$.
4. a) State the Bounded Convergence Theorem for a sequence $\left\{f_{n}\right\}$ of measurable functions on a measurable set $E \subset \mathbb{R}$.
b) Show, by an example, that the boundedness assumption is necessary.
5. a) Give the definition of a function of bounded variation on the interval $[a, b]$.
b) Show that if f and g are functions of bounded variation on $[a, b]$, then their product $f \cdot g$ is also of bounded variation.
6. Consider the measure spaces $([0,1], \mathcal{F}, m)$ and $([0,1], \mathcal{P}([0,1]), \mu)$, where μ is the counting measure on $\mathcal{P}([0,1])$. Let $D=\{(x, x): x \in[0,1]\}$ and $f=\chi_{D}$ on $[0,1] \times[0,1]$. Show that

$$
\int\left(\int f_{x} d \mu\right) d m \neq \int\left(\int f^{x} d m\right) d \mu .
$$

Does this contradict Fubini's Theorem?
7. Let $f \in L^{p} \cap L^{q}$, where $0<p<q<+\infty$. If $p<r<q$, show that $f \in L^{r}$ and that $\varphi:[p, q] \rightarrow \mathbb{R}$, defined by $\varphi(r)=\ln \left(\|f\|_{r}^{r}\right)$, is convex.
8. Let $A \in \mathcal{F}$ and $\left\{f_{n}\right\}$ be a sequence of measurable functions such that $\forall n \in \mathbb{N}, \forall x \in$ $A,\left|f_{n}(x)\right| \leq \frac{1}{n^{2}}$. Let g be an integrable function on A. Show that

$$
\int_{A}\left(\sum_{n=1}^{\infty} f_{n} g\right) d m=\sum_{n=1}^{\infty} \int_{A} f_{n} g d m
$$

9. Let $f, f_{n}, n=1,2, \ldots$ be Lebesgue measurable functions defined on \mathbb{R} such that $\left\lvert\, f_{n}(x) \leq \frac{1}{|x|}\right.$ a.e. on \mathbb{R}, for each $n \in \mathbb{N}$, and $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ a.e. on \mathbb{R}. Show that $f_{n} \rightarrow f$ in measure.
10. Let f and g be integrable functions on $[a, b]$ and let $F(x)=\alpha+\int_{a}^{x} f(t) d t, G(x)=$ $\beta+\int_{a}^{x} g(t) d t \forall x \in[a, b]$. Show that

$$
\int_{a}^{b} G(t) f(t) d t+\int_{a}^{b} g(t) F(t) d t=F(b) G(b)-F(a) G(a)
$$

