Analysis Preliminary Examination June 2011

Unless a problem states otherwise, \mathbb{R} is endowed with Lebesgue measure, which will be denoted by m. Please justify your answers.

1. a) Give the definition of the (Lebesgue) outer measure $m^{*}(A)$ of a set $A \subset \mathbb{R}$.
b) Prove that if $A \subset \mathbb{R}$ is a countable set, then $m^{*}(A)=0$.
c) Prove or disprove with a counterexample: If $A \subset \mathbb{R}$ is an uncountable set, then $m^{*}(A)>0$.
2. a) Show that any set $A \subset \mathbb{R}$ such that $m^{*}(A)=0$ is measurable.
b) Prove that the Lebesgue measure is translation invariant, i.e., if $A \subset \mathbb{R}$ is a measurable set and $\alpha \in \mathbb{R}$, then $m(A)=m(\alpha+A)$.
3. a) Give the defintion of a measurable function $f: E \rightarrow \mathbb{R}$, where E is a measurable subset of \mathbb{R}.
b) Prove or disprove the following statements
i) f is measurable if and only if $\{x: f(x)=\alpha\}$ is measurable for all $\alpha \in \mathbb{R}$.
ii) f is measurable if and only if $|f|$ is measurable.
4. a) State the Monotone Convergence Theorem for a sequence $\left\{f_{n}\right\}$ of measurable functions on a measurable set $E \subset \mathbb{R}$.
b) Show, by an example, that the monotonicity assumption is necessary.
5. a) State Fubini's Theorem (for product spaces).
b) Let (X, \mathcal{F}, μ) and (Y, \mathcal{G}, ν) be measure spaces; E and F are measurable subsets of $X \times Y$ such that $\nu\left(E_{x}\right)=\nu\left(F_{x}\right)$ for almost every $x \in X$. Show that $(\mu \times \nu)(E)=$ $(\mu \times \nu)(F)$.
6. a) State Hölder's Inequality. When does the equality hold?
b) Let $\left\{f_{n}\right\} \subset L_{p}$ such that $\left\|f_{n}-f\right\|_{p} \rightarrow 0$, where $f \in L_{p}$. Show that if g is essentially bounded, then $\left\|f_{n} g-f g\right\|_{p} \rightarrow 0$.
7. Let $1<p, q$ such that $\frac{1}{p}+\frac{1}{q}=1$. Assume that $\left\{f_{n}\right\} \subset L_{p}$ such that $\left\|f_{n}-f\right\|_{p} \rightarrow 0$, where $f \in L_{p}$ and $\left\{g_{n}\right\} \subset L_{q}$ such that $\left\|g_{n}-g\right\|_{q} \rightarrow 0$, where $g \in L_{q}$. Show that $\left\|f_{n} g_{n}-f g\right\|_{1} \rightarrow 0$.
8. a) State the definition of absolutely continuous function on an interval $[a, b]$.
b) Let $f \in \mathcal{L}_{\infty}([a, b])$ and $F(x)=\int_{a}^{x} f(t) d t$, for all $x \in[a, b]$. Show that F is absolutely continuous on $[a, b]$.
9. Let $\left\{f_{n}\right\} \subset L_{p}$ and $f \in L_{p}, 1<p<\infty$, such that $f_{n} \rightarrow f$ a.e. and $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{p}=$ $\|f\|_{p}$. Show that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=0$.
10. Let μ, ν and λ be σ-finite measures defined on the sigma algebra \mathcal{F} such that $\lambda \ll \mu$ and $\mu \ll \nu$. Show that $\lambda \ll \nu$, and that we have

$$
\frac{d \lambda}{d \nu}=\frac{d \lambda}{d \mu} \frac{d \mu}{d \nu} \quad \nu-a . e .
$$

