Analysis Preliminary Examination June 2011

Unless a problem states otherwise, \mathbb{R} is endowed with Lebesgue measure, which will be denoted by m. Please justify your answers.

- 1. a) Give the definition of the (Lebesgue) outer measure $m^*(A)$ of a set $A \subset \mathbb{R}$.
 - b) Prove that if $A \subset \mathbb{R}$ is a countable set, then $m^*(A) = 0$.
 - c) Prove or disprove with a counterexample: If $A \subset \mathbb{R}$ is an uncountable set, then $m^*(A) > 0$.
- 2. a) Show that any set $A \subset \mathbb{R}$ such that $m^*(A) = 0$ is measurable.
 - b) Prove that the Lebesgue measure is translation invariant, i.e., if $A \subset \mathbb{R}$ is a measurable set and $\alpha \in \mathbb{R}$, then $m(A) = m(\alpha + A)$.
- 3. a) Give the definition of a measurable function $f: E \to \mathbb{R}$, where E is a measurable subset of \mathbb{R} .
 - b) Prove or disprove the following statements
 - i) f is measurable if and only if $\{x : f(x) = \alpha\}$ is measurable for all $\alpha \in \mathbb{R}$.
 - ii) f is measurable if and only if |f| is measurable.
- 4. a) State the Monotone Convergence Theorem for a sequence $\{f_n\}$ of measurable functions on a measurable set $E \subset \mathbb{R}$.
 - b) Show, by an example, that the monotonicity assumption is necessary.
- 5. a) State Fubini's Theorem (for product spaces).
 - b) Let (X, \mathcal{F}, μ) and (Y, \mathcal{G}, ν) be measure spaces; E and F are measurable subsets of $X \times Y$ such that $\nu(E_x) = \nu(F_x)$ for almost every $x \in X$. Show that $(\mu \times \nu)(E) = (\mu \times \nu)(F)$.
- 6. a) State Hölder's Inequality. When does the equality hold?
 - b) Let $\{f_n\} \subset L_p$ such that $||f_n f||_p \to 0$, where $f \in L_p$. Show that if g is essentially bounded, then $||f_n g fg||_p \to 0$.
- 7. Let 1 < p, q such that $\frac{1}{p} + \frac{1}{q} = 1$. Assume that $\{f_n\} \subset L_p$ such that $||f_n f||_p \to 0$, where $f \in L_p$ and $\{g_n\} \subset L_q$ such that $||g_n - g||_q \to 0$, where $g \in L_q$. Show that $||f_n g_n - fg||_1 \to 0$.
- 8. a) State the definition of absolutely continuous function on an interval [a, b].

- b) Let $f \in \mathcal{L}_{\infty}([a,b])$ and $F(x) = \int_{a}^{x} f(t)dt$, for all $x \in [a,b]$. Show that F is absolutely continuous on [a,b].
- 9. Let $\{f_n\} \subset L_p$ and $f \in L_p$, $1 , such that <math>f_n \to f$ a.e. and $\lim_{n\to\infty} ||f_n||_p = ||f||_p$. Show that $\lim_{n\to\infty} ||f_n f||_p = 0$.
- 10. Let μ , ν and λ be σ -finite measures defined on the sigma algebra \mathcal{F} such that $\lambda \ll \mu$ and $\mu \ll \nu$. Show that $\lambda \ll \nu$, and that we have

$$\frac{d\lambda}{d\nu} = \frac{d\lambda}{d\mu} \frac{d\mu}{d\nu} \quad \nu - a.e.$$