Analysis Preliminary Examination

August 2006

- Unless a problem states otherwise you can assume that any unspecified measure is Lebesgue measure.
- 1. If $\{f_n\}$ is a sequence of measurable real-valued functions prove that $\limsup f_n$ is measurable.
- (a) State what it means for a set to be measurable.
 (b) If E₁ and E₂ are measurable sets prove that m(E₁∪E₂) + m(E₁∩E₂) = m(E₁) + M(E₂).
- 3. Prove that every open set in \mathbb{R} and every closed set in \mathbb{R} is measurable.
- 4. Define

$$f(x) = \begin{cases} e^x & x \in E \\ -e^x & x \in E^c \end{cases}$$

where E is a nonmeasurable subset of \mathbb{R} . Show that $f^{-1}(t)$ is measurable for every $t \in \mathbb{R}$. On the other hand show that f is not a measurable function.

- 5. Prove that an algebra of sets A is a σ -algebra of sets if and only if A is closed under countable increasing unions (i.e. If $\{a_i\}_{i=1}^{\infty} \subseteq A$ and $a_i \subseteq a_{i+1}$ for all i, then $\cup a_i \in A$).
- 6. Let f be of bounded variation on [a, b]. Show that

$$\int_{[a,b]} |f'| \le T$$

where T is the total variation of f on the interval [a, b].

7. Let $f \in L^1 \cap L^2$ and let $A = \{x : |f(x)| \ge 1\}$. Define

$$g(x) = \begin{cases} |f(x)|^2 & x \in A\\ |f(x)| & x \in A^c \end{cases}.$$

Use g to show that $f\in L^p$ for all $1\leq p\leq 2$ and that

$$\lim_{p \to 1^+} \|f\|_p = \|f\|_1$$

- 8. Let (X, μ, \mathcal{B}) be a measure space. Assume that $\{f_n\}$ and $\{g_n\}$ are sequences of real-valued functions on X converging in measure to f and g, respectively. Show that if $\mu(X) < \infty$ then $f_n g_n \to fg$ in measure. Show by way of counterexample that if $\mu(X) = \infty$ this is not true.
- 9. Let $g: X \to \mathbb{R}$ be a μ -integrable function, and let $h: Y \to \mathbb{R}$ be a ν -integrable function, where μ and ν are arbitrary measures on X and Y, respectively. Define $f: X \times Y \to \mathbb{R}$ by f(x,y) = g(x)h(y) for each x, y. Show that f is $\mu \times \nu$ integrable and

$$\int f \, d(\mu \times \nu) = \left(\int_X g \, d\mu \right) \cdot \left(\int_Y h \, d\nu \right).$$

10. Let $A \subset [0,1]$ be a Borel set such that $0 < m(A \cap I) < m(I)$ for all interval $I \subseteq [0,1]$. Let $F(x) = m([0,x] \cap A)$. Show that F(x) is absolutely continuous and strictly increasing on [0,1] but F'(x) = 0 on a set of positive measure.