Analysis Preliminary Examination

August 2006

- Unless a problem states otherwise you can assume that any unspecified measure is Lebesgue measure.

1. If $\left\{f_{n}\right\}$ is a sequence of measurable real-valued functions prove that $\lim _{n} \sup f_{n}$ is measurable.
2. (a) State what it means for a set to be measurable.
(b) If E_{1} and E_{2} are measurable sets prove that $m\left(E_{1} \cup E_{2}\right)+m\left(E_{1} \cap E_{2}\right)=m\left(E_{1}\right)+M\left(E_{2}\right)$.
3. Prove that every open set in \mathbb{R} and every closed set in \mathbb{R} is measurable.
4. Define

$$
f(x)= \begin{cases}e^{x} & x \in E \\ -e^{x} & x \in E^{c}\end{cases}
$$

where E is a nonmeasurable subset of \mathbb{R}. Show that $f^{-1}(t)$ is measurable for every $t \in \mathbb{R}$. On the other hand show that f is not a measurable function.
5. Prove that an algebra of sets A is a σ-algebra of sets if and only if A is closed under countable increasing unions (i.e. If $\left\{a_{i}\right\}_{i=1}^{\infty} \subseteq A$ and $a_{i} \subseteq a_{i+1}$ for all i, then $\cup a_{i} \in A$).
6. Let f be of bounded variation on $[a, b]$. Show that

$$
\int_{[a, b]}\left|f^{\prime}\right| \leq T
$$

where T is the total variation of f on the interval $[a, b]$.
7. Let $f \in L^{1} \cap L^{2}$ and let $A=\{x:|f(x)| \geq 1\}$. Define

$$
g(x)= \begin{cases}|f(x)|^{2} & x \in A \\ |f(x)| & x \in A^{c}\end{cases}
$$

Use g to show that $f \in L^{p}$ for all $1 \leq p \leq 2$ and that

$$
\lim _{p \rightarrow 1^{+}}\|f\|_{p}=\|f\|_{1}
$$

8. Let (X, μ, \mathcal{B}) be a measure space. Assume that $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ are sequences of real-valued functions on X converging in measure to f and g, respectively. Show that if $\mu(X)<\infty$ then $f_{n} g_{n} \rightarrow f g$ in measure. Show by way of counterexample that if $\mu(X)=\infty$ this is not true.
9. Let $g: X \rightarrow \mathbb{R}$ be a μ-integrable function, and let $h: Y \rightarrow \mathbb{R}$ be a ν-integrable function, where μ and ν are arbitrary measures on X and Y, respectively. Define $f: X \times Y \rightarrow \mathbb{R}$ by $f(x, y)=g(x) h(y)$ for each x, y. Show that f is $\mu \times \nu$ integrable and

$$
\int f d(\mu \times \nu)=\left(\int_{X} g d \mu\right) \cdot\left(\int_{Y} h d \nu\right)
$$

10. Let $A \subset[0,1]$ be a Borel set such that $0<m(A \cap I)<m(I)$ for all interval $I \subseteq[0,1]$. Let $F(x)=m([0, x] \cap A)$. Show that $F(x)$ is absolutely continuous and strictly increasing on $[0,1]$ but $F^{\prime}(x)=0$ on a set of positive measure.
