Analysis Preliminary Examination

August 2007

- Unless a problem states otherwise m will denote Lebesgue measure.
- Please justify your answers.
- 1. Suppose $f \in L^1(\mathbb{R}, m)$, show that

$$\lim_{n \to \infty} \int_{\mathbb{R}} f(x) \cos(nx) \, dm = 0.$$

- 2. Show that if $f_n \to f$ in $L^1(\mathbb{R}, m)$ then $f_n \to f$ in measure. Is the converse true?
- 3. Let m^* denote Lebesgue outer measure on \mathbb{R} and suppose that $E \subseteq \mathbb{R}$ has the property that

$$m^*(E \cap (a,b)) < \frac{3}{4}(b-a)$$

for every finite open interval (a, b). Show that E has 0 measure.

- 4. If f is continuous on [0, 1] is it of bounded variation?
- 5. Decide whether the following are true or false.
 - (a) If $f : \mathbb{R} \to \mathbb{R}$ is Lebesgue integrable, then $\lim_{x \to \infty} |f(x)| = 0$.
 - (b) If $f : \mathbb{R} \to \mathbb{R}$ is Lebesgue integrable, then setting

$$E_n := \{x \in \mathbb{R} : |f(x)| > n\}$$

we have $\lim_{n\to\infty}\int_{E_n}|f|=0.$

6. Let $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a function such that f(x, t) is a measurable function of x, for each $t \in \mathbb{R}$. Assume further that for each $x \in \mathbb{R}$, f(x, t) is a continuous function of t. If there exists an integrable function $g : \mathbb{R} \to \mathbb{R}$ such that for each $t \in \mathbb{R}$, the inequality $|f(x, t)| \leq g(x)$ holds for almost every $x \in \mathbb{R}$ then the function

$$F(t) = \int_{\mathbb{R}} f(x,t) \, dm(x)$$

is a continuous function of t.

- 7. Let M be a closed subspace of the Banach space X. For $x \in X \setminus M$ prove that there exists $\varphi \in X^*$ such that $\|\varphi\| = 1, \varphi|_M = 0$ and $\varphi(x) = \inf\{\|x y\| : y \in M\}$.
- 8. Let K be a compact subset of a metric space, and assume that $\{G_i\}$ is an open cover of K. Prove that there exists $\varepsilon > 0$ such that for every $x \in K$, there is an *i* with $B(x, \varepsilon) \subseteq G_i$.
- 9. Suppose that μ and ν are σ -finite measures on X with $\nu \ll \mu$ and let $\lambda = \mu + \nu$. If $f = \frac{d\nu}{d\lambda}$ then $0 \le f \le 1 \mu$ -a. e. and $\frac{d\nu}{d\mu} = \frac{f}{1-f}$.
- 10. Consider a measure space (X, μ) with $\mu(X) = 1$, and let $f, g \in L^2(\mu)$. If $\int f d\mu = 0$ then use Hölder's Inequality to deduce that

$$\left(\int fg \, d\mu\right)^2 \leq \left(\int g^2 \, d\mu - \left(\int g \, d\mu\right)^2\right) \int f^2 \, d\mu$$