Analysis Preliminary Examination September 2011

- Unless a problem states otherwise m will denote Lebesgue measure.
- Please justify your answers.
- Provide solutions to 8 of the problems below (additional problems will not be graded)
- 1. Let (X, \mathcal{B}, μ) be a measure space. Let $\mathcal{N} := \{N \in \mathcal{M} : \mu(N) = 0\}$ and $\overline{\mathcal{B}} := \{E \cup F : E \in \mathcal{B} \text{ and } F \subseteq N \text{ for some } N \in \mathcal{N}\}$. Prove that $\overline{\mathcal{B}}$ is a σ -algebra and there is a unique extension $\overline{\mu}$ of μ to a complete measure on $\overline{\mathcal{B}}$.
- 2. Let $A \subseteq \mathbb{R}$ with finite outer measure. Show that A is Lebesgue measurable if and only if there is a $B \in G_{\sigma\delta}$ with $A \subseteq B$ and $m^*(B \setminus A) = 0$.
- 3. If $f : \mathbb{R} \to [0, \infty]$ then f is measurable if and only if there is a sequence of simple functions φ_n such that $0 \le \varphi_1 \le \varphi_2 \le \cdots \le f$ and $\varphi_n \to f$ almost everywhere.
- 4. Compute the following
 - (a) $\lim_{n \to \infty} n(1+n^2x^2)^{-1}$
 - (b) $\lim_{n \to \infty} \int_{a}^{\infty} n(1+n^2x^2)^{-1} dx.$
 - (c) Explain your answer to part b with respect to the convergence theorems.
- 5. Prove that if $\{f_1, f_2, \dots, f_n\}$ are measurable functions then so is $\max\{f_1, f_2, \dots, f_n\}$.
- 6. State the Bounded Convergence Theorem and show by example that boundedness is essential.
- 7. Answer the following:
 - (a) What does it mean for a function to be of bounded variation on the interval [a, b].
 - (b) Describe the relationship between functions of bounded variation and monotonic functions.
 - (c) Construct an example of a continuous function on [0, 1] which is not of bounded variation.
- 8. Let $f \in L_1[0,1]$ and $\{f_n\}_{n=1}^{\infty} \subseteq L_1[0,1]$ such that $f_n \to f$ almost everywhere. Prove that $||f_n f||_1 \to 0$ if and only if $||f_n||_1 \to ||f||_1$.
- 9. Prove or provide a counterexample: If f_n converges to f in the L_p norm then $f_n \to f$ almost everywhere.
- 10. Let (X, \mathcal{B}, μ) be a finite measure space and $\{E_k\}_{k=1}^n \subseteq \mathcal{B}$, and $\{c_k\}_{k=1}^n$ a collection of real numbers. For $E \in \mathcal{B}$ define

$$\nu(E) = \sum_{k=1}^{n} c_k \mu(E_k \cap E)$$

and show that ν is absolutely continuous with respect to μ . Determine the Radon-Nikodym derivative $\frac{d\nu}{d\mu}$.