Analysis Preliminary Examination January 2012

- Unless a problem states otherwise m will denote Lebesgue measure, m^* will denote Lebesgue outer measure, and \mathcal{L} will denote the Lebesgue measurable sets.
- Please justify your answers.
- 1. Recall that the Borel σ -algebra on \mathbb{R} is the σ -algebra generated by the open sets in \mathbb{R} . Show that the Borel σ -algebra is also generated by

$$\{[a,b): -\infty < a < b < \infty\}.$$

- 2. Let (X, M, μ) be a measure space.
 - (a) Define what it means for (X, M, μ) to be complete.
 - (b) Show that $(\mathbb{R}, \mathcal{L}, m)$ is complete.

3. Let
$$f : \mathbb{R} \to \mathbb{R}$$
.

- (a) Show that if f is monotonic then f is measurable.
- (b) Explain why if f is of bounded variation then f is measurable.
- 4. Assume f is a positive valued measurable function and define $\lambda(E) = \int_E f \, dm$ for every measurable set E.
 - (a) Show that λ is a measure.
 - (b) Show that for any positive valued measurable function g, we have $\int g d\lambda = \int fg dm$ (Hint: First assume that g is simple).
- 5. Assume that f is a measurable function on [0, 1].
 - (a) Give the definition of $L^p[0,1]$ for $1 \le p \le \infty$.
 - (b) Recall that if $f \in L^{\infty}[0,1]$ then $f \in L^{p}[0,1]$ for all $1 \leq p < \infty$. Show that if $f \in L^{\infty}$ then

$$\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}.$$

- 6. (a) State Fatou's Lemma and show by an example that the inequality can be strict.
 - (b) State the Monotone Convergence Theorem. Does the Monotone Convergence Theorem follow from Fatou's Lemma (you need not explain your answer)?
- 7. Let $f:[0,1] \to \mathbb{R}$ be a function.
 - (a) Show that if f is measurable then so is |f|.
 - (b) Show that if $f \in L^p[0,1]$ and $\varepsilon > 0$ then

$$m^*(\{x: |f(x)| > \varepsilon\}) \le \frac{\|f\|_p^p}{\varepsilon^p}$$

for $1 \leq p < \infty$.

- 8. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces.
 - (a) State the Fubini-Tonelli Theorem(s) for $X \times Y$.
 - (b) If $f(x,y) = ye^{-1(1+x^2)y^2}$ for all $(x,y) \in [0,\infty) \times [0,\infty)$, explain why

$$\int_{[0,\infty)} \left[\int_{[0,\infty)} f(x,y) \, dm(x) \right] dm(y) = \int_{[0,\infty)} \left[\int_{[0,\infty)} f(x,y) \, dm(y) \right] dm(x).$$

e previous part to conclude that $\int_{0}^{\infty} e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}.$

(c) Use the previous part to conclude that $\int_0^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$