Analysis Preliminary Examination

January 2008

- Unless a problem states otherwise m will denote Lebesgue measure.
- Please justify your answers.

1. (a) State the Lebesgue Differentiation Theorem.
(b) Foe a Borel set $E \subseteq \mathbb{R}$ define the density of E at x to be equal to

$$
D_{e}(x):=\lim _{r \rightarrow 0} \frac{m(E \cap(x-r, x+r))}{2 r}
$$

Show that $D_{e}(x)=1$ for almost every $x \in E$ and $D_{e}(x)=0$ for almost every $x \in E^{c}$.
2. True or false? An open dense set in \mathbb{R} must have infinite measure. Justify!
3. If $\left\{f_{n}\right\}$ is a sequence of real-valued measurable functions, prove that $\lim \sup _{n} f_{n}$ is measurable as well.
4. Let $f \in L^{1}(\mathbb{R}, m)$.
(a) Show that the set $\{x: f(x) \neq 0\}$ is σ-finite.
(b) For every $\varepsilon>0$ there must exist a bounded function $g_{\varepsilon}: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
m\left(\left\{x: f(x) \neq g_{\varepsilon}(x)\right\}\right)<\varepsilon .
$$

5. If $f \in L^{1}(\mathbb{R}, m)$ and we define

$$
F(x)=\int_{[-\infty, x]} f d m
$$

then show that $F(x)$ is continuous.
6. Let X be a normed vector space:
(a) Define what it means for a series in X to be absolutely convergent.
(b) Show that X is complete iff every absolutely convergent series in X converges.
7. A function $F:(a, b) \rightarrow \mathbb{R}$ is called convex if

$$
F(\lambda s+(1-\lambda) t) \leq \lambda F(s)+(1-\lambda) F(t)
$$

for all $s, t \in(a, b)$ and $\lambda \in(0,1)$. Show that the following are equivalent
(a) F is convex.
(b) For all $s, t, s^{\prime}, t^{\prime} \in(a, b)$ with $s \leq s^{\prime}<t^{\prime}$ and $s<t \leq t^{\prime}$

$$
\frac{F(t)-F(s)}{t-s} \leq \frac{F\left(t^{\prime}\right)-F\left(s^{\prime}\right)}{t^{\prime}-s^{\prime}}
$$

(c) F is absolutely continuous on every compact subinterval of (a, b) and F^{\prime} is increasing on the set where it is defined.
8. Let $\left\{r_{1}, r_{2}, \ldots\right\}$ be some fixed enumeration of \mathbb{Q}. Define a function f by

$$
f(x):=\sum_{r_{j}<x} 3^{-j} .
$$

Show that $0<f(x)<1 / 2$, and that f is increasing on \mathbb{R}. Is f absolutely continuous on \mathbb{R} ? Justify your answer!

