Analysis Preliminary Examination

January 2008

- Unless a problem states otherwise m will denote Lebesgue measure.
- Please justify your answers.
- 1. (a) State the Lebesgue Differentiation Theorem.
 - (b) Foe a Borel set $E \subseteq \mathbb{R}$ define the density of E at x to be equal to

$$D_e(x) := \lim_{r \to 0} \frac{m(E \cap (x - r, x + r))}{2r}.$$

Show that $D_e(x) = 1$ for almost every $x \in E$ and $D_e(x) = 0$ for almost every $x \in E^c$.

- 2. True or false? An open dense set in \mathbb{R} must have infinite measure. Justify!
- 3. If $\{f_n\}$ is a sequence of real-valued measurable functions, prove that $\limsup_n f_n$ is measurable as well.
- 4. Let $f \in L^1(\mathbb{R}, m)$.
 - (a) Show that the set $\{x : f(x) \neq 0\}$ is σ -finite.
 - (b) For every $\varepsilon > 0$ there must exist a bounded function $g_{\varepsilon} : \mathbb{R} \to \mathbb{R}$ such that

$$m(\{x: f(x) \neq g_{\varepsilon}(x)\}) < \varepsilon.$$

5. If $f \in L^1(\mathbb{R}, m)$ and we define

$$F(x) = \int_{[-\infty,x]} f \, dm$$

then show that F(x) is continuous.

- 6. Let X be a normed vector space:
 - (a) Define what it means for a series in X to be absolutely convergent.
 - (b) Show that X is complete iff every absolutely convergent series in X converges.
- 7. A function $F: (a, b) \to \mathbb{R}$ is called convex if

$$F(\lambda s + (1 - \lambda)t) \le \lambda F(s) + (1 - \lambda)F(t),$$

for all $s, t \in (a, b)$ and $\lambda \in (0, 1)$. Show that the following are equivalent

- (a) F is convex.
- (b) For all $s, t, s', t' \in (a, b)$ with $s \leq s' < t'$ and $s < t \leq t'$

$$\frac{F(t) - F(s)}{t - s} \le \frac{F(t') - F(s')}{t' - s'}.$$

- (c) F is absolutely continuous on every compact subinterval of (a, b) and F' is increasing on the set where it is defined.
- 8. Let $\{r_1, r_2, ...\}$ be some fixed enumeration of \mathbb{Q} . Define a function f by

$$f(x) := \sum_{r_j < x} 3^{-j}.$$

Show that 0 < f(x) < 1/2, and that f is increasing on \mathbb{R} . Is f absolutely continuous on \mathbb{R} ? Justify your answer!