Analysis Preliminary Examination January 2013

- Unless a problem states otherwise m will denote Lebesgue measure, m^* will denote Lebesgue outer measure, and \mathcal{L} will denote the Lebesgue measurable sets. You may use without proof the Lebesgue dominated convergence theorem and the Fubini-Tonelli Theorem.
- Please justify your answers.
- Clearly indicate which problems you wish to be considered for grading.

Part I: Measure Theory

Provide solutions to 6 of the problems below

I.1 Let f be real-valued.

- (a) Give the definition of a measurable function.
- (b) If f is measurable, is f^2 measurable? Justify.
- (c) If f^2 is measurable, is f measurable? Justify.
- I.2 Let X be a countable set and μ a measure on X. Assume that for any $F \subseteq X$ there is $G \subseteq F$ with $\mu(G) < \infty$. Prove the following:
 - (a) For any $x \in X$, $\mu(\{x\}) < \infty$.
 - (b) μ is σ -finite.
- I.3 Let (X, \mathcal{M}, μ) be a measure space. Assume $\{f_n\}$ is a sequence in $L^1(X, \mu)$ so that $f_n \to f$ pointwise, and there exists M > 0 so that for all n and all $x \in X$ the inequality $|f_n(x)| \leq M$ holds.
 - (a) If $\mu(X) < \infty$, show that $f \in L^1(X, \mu)$ and $\int f_n \to \int f$.
 - (b) Show by example that the above conclusion may fail if $\mu(X) = \infty$.
- I.4 Let μ^* be an outer measure on a set X. If $E \subseteq X$ satisfies $\mu^*(E) = 0$ prove that E is μ^* -measurable.

I.5 Let $f:[0,1] \to \mathbb{R}$ be a continuous function of bounded variation such that f(0) = 0.

(a) Give an example of such a function for which the identity

$$f(x) = \int_0^x f'(x) dx$$

fails to hold for a.e. $x \in [0, 1]$.

- (b) For what type of functions f does the identity in (a) hold almost everywhere?
- I.6 (a) State the Monotone Convergence Theorem.
 - (b) State Fatou's Lemma.
 - (c) Prove Fatou's Lemma using the Monotone Convergence Theorem or prove the Monotone Convergence Theorem using Fatou's Lemma.

I.7 Define $F : \mathbb{R} \to \mathbb{R}$ by

$$F(x) = \begin{cases} 0 & \text{if } x < 1/4, \\ x & \text{if } 1/4 \le x < 1, \\ x^2 + 1 & \text{if } 1 \le x. \end{cases}$$

Let μ_F be the Borel measure associated to F.

- (a) Calculate $\mu_F((1/4, 1])$ and $\mu_F((1/4, 1))$.
- (b) Calculate the Lebesgue derivative of μ_F .
- (c) Give the Lebesgue-Radon-Nikodym decomposition of μ_F with respect to m.
- I.8 Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measures spaces and assume that $E \in \mathcal{M} \times \mathcal{N}$. Show that if $\mu \times \nu(E) = 0$ then $\nu(E_x) = \mu(E^x) = 0$ for a.e. x and y.

Part II: Complex and Functional Analysis

Provide solutions to 3 of the problems below

- II.1 Let X be a normed vector space, prove that X^* is a complete normed vector space.
- II.2 Assume that $T \in B(\mathcal{H})$ is isometric and surjective where H is a Hilbert space. Prove that T is a unitary operator.
- II.3 Let X be a Banach space and $x, y \in X$. If $x \neq y$ prove that there is $\varphi \in X^*$ with $\varphi(x) \neq \varphi(y)$.
- II.4 (a) State the Casorati-Weierstrass theorem.
 - (b) Let f be holomorphic and bounded on the punctured unit disk $\{z \in \mathbb{C} : 0 < |z| < 1\}$. Argue that f has a removable singularity at the origin.
- II.5 (a) State the maximum modulus theorem.
 - (b) Let f be a holomorphic function mapping the unit disk into the unit circle. Show that f is constant.
- II.6 Let f be holomorphic on \mathbb{C} and assume that there exists c > 0 such that

$$|f(z)| \le c(1+\sqrt{|z|})$$

for all complex z. Show that f is constant.