Analysis Preliminary Examination

May 2007

• Unless a problem states otherwise you can assume that μ is an arbitrary measure.

- 1. Let (X, \mathcal{M}, μ) be a finite measure space.
 - (a) If $E, F \in \mathcal{M}$ and $\mu(E \triangle F) = 0$ then $\mu(E) = \mu(F)$.
 - (b) Say that $E \sim F$ if $\mu(E \triangle F) = 0$. Show that \sim is an equivalence relation on \mathcal{M} .
 - (c) For $E, F \in \mathcal{M}$ define $\rho(E, F) = \mu(E \triangle F)$. Show that $\rho(E, F) \leq \rho(E, G) + \rho(G, F)$ and hence ρ defines a metric on equivalence classes of M under the relation \sim .
- 2. Suppose $\{f_n\} \subseteq L^1(\mu)$ and $f_n \to f$ uniformly.
 - (a) If $\mu(X) < \infty$ then $f \in L^1(\mu)$ and $\int f_n \to \int f$.
 - (b) Show by example that the conclusions of (a) can fail if $\mu(X) = \infty$.
- 3. If (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ -finite measure spaces, $f \in L^1(\mu)$, and $g \in L^1(\nu)$ define h(x, y) = f(x)g(y).
 - (a) Show that $\int h d(\mu \times \nu) = \left(\int f d\mu\right) \left(\int g d\nu\right)$.
 - (b) if $\mu_1 \ll \mu$ and $\nu_1 \ll \nu$ show that

$$\frac{d(\mu_1 \times \nu_1)}{d(\mu \times \nu)} = \frac{d\mu_1}{d\mu} \frac{d\nu_1}{d\nu}.$$

- 4. Let μ be counting measure on \mathbb{N} . Show that $f_n \to f$ in measure if and only if $f_n \to f$ uniformly.
- 5. Show that a linear functional on a normed vector space is continuous if and only if it is bounded.
- 6. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces and let $K : X \times Y \to \mathbb{C}$ be $\mathcal{M} \otimes \mathcal{N}$ measurable. Suppose that there exists C > 0 such that $\int |K(x, y)| d\mu(x) \leq C$ for ν -a.e. $y \in Y$.
 If $f \in L^1(\nu)$ the integral

$$Tf(x) = \int K(x, y)f(y) \, d\nu(y)$$

defines a linear map from L^1 into L^1 such that $||Tf||_1 \leq C||f||_1$.

- 7. Let F be absolutely continuous on [a, b]. Show that f is of bounded variation on [a, b].
- 8. Let (X, \mathcal{M}, μ) be a measure space and let L^+ denote the set of all positive valued measurable functions on X. Assuming that $f \in L^+$, show that

$$\nu(E) = \int_E f \, d\mu$$

defines a measure on X and further if $g \in L^+$,

$$\int g \, d\nu = \int f g \, d\mu.$$