Analysis Preliminary Examination

January 2007

- Unless a problem states otherwise you can assume that μ is an arbitrary measure.
- 1. Let m^* denote Lebesgue outer measure on \mathbb{R} . Prove that m^* is countably subadditive. Use this to prove that $m^*(\mathbb{Q}) = 0$.
- 2. Define what it means for a function to be of bounded variation. Give an example of a function which is not of bounded variation, be sure to explain why it is not.
- 3. For $f : \mathbb{R} \to \mathbb{R}$ show that f is of bounded variation if and only if f is the difference of two bounded increasing functions on \mathbb{R} .
- 4. Let *m* denote Lebesgue measure on \mathbb{R} and assume $f \in L^1(m)$. Define $F(x) = \int_{(-\infty,x]} f(t) dm(t)$ and show that *F* is continuous on \mathbb{R} .
- 5. (a) Let f and g be μ -measurable functions, and let p and q be conjugate exponents. State Hölder's inequality for f and g.
 - (b) If $\mu(X) = 1$, $f \in L^1(\mu)$, and $g \in L^1(\mu)$ with f and g both positive functions satisfying $f(x)g(x) \ge 1\mu a.e.$ Use Hölder's inequality to deduce that

$$\left(\int f\,d\mu\right)\cdot\left(\int g\,d\mu\right)\geq 1.$$

6. Let (X, \mathcal{M}, μ) be the measure space with $X = \mathbb{N}$, $\mathcal{M} = \mathcal{P}(\mathbb{N})$ and μ equal to counting measure. Define $f : X \times X \to \mathbb{R}$ by

$$f(m,n) = \begin{cases} 1 & m = n \\ -1 & m = n+1 \\ 0 & \text{otherwise} \end{cases}$$

Show that f is not $\mu \times \mu$ integrable and further that

$$\int \int f(m,n) \, d\mu(m) \, d\mu(n) \neq \int \int f(m,n) \, d\mu(n) \, d\mu(m).$$

- 7. If $f : \mathbb{R} \to \mathbb{R}$ is differentiable everywhere and f'(x) is uniformly bounded, show that f is absolutely continuous.
- 8. If E is a Lebesgue measurable subset of \mathbb{R} with m(E) > 0 then for all $0 < \alpha < 1$ there is an open interval I such that $m(E \cap I) > \alpha m(I)$. Here m denotes Lebesgue measure.
- 9. Let m^* denote Lebesgue outer measure on [0, 1]. Define the inner measure $\mu_*(E) = 1 \mu^*(E^c)$. Show that E is measurable if and only if $\mu^*(E) = \mu_*(E)$.
- 10. Let $\{f_n\}$ and $\{g_n\}$ be sequences of integrable functions. If there exists f and g such that $f, g \in L^1(\mu), f_n \to f \mu$ -a.e., $g_n \to g \mu$ -a.e., $|f_n(x)| \leq g_n(x)$ for all x, and $\int g_n d\mu \to \int g d\mu$ then

$$\lim_{n \to \infty} \int f_n \, d\mu = \int f \, d\mu.$$