Analysis Preliminary Examination

$\mathrm{MAY}\ 2006$

- Unless a problem states otherwise you can assume that any unspecified measure is Lebesgue measure.
- 1. Let S be the collection of all subsets of [0, 1) which can be written as a finite union of intervals of the form $[a, b) \subseteq [0, 1)$. Show that S is an algebra of sets, but is not a σ -algebra.
- 2. Let m^* denote Lebesgue outer measure on \mathbb{R} . Prove that m^* is countably subadditive. Use this to prove that $m^*(\mathbb{Q}) = 0$.
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable. Show that the function f' is measurable.
- 4. Let A be a measurable subset of \mathbb{R} with $0 < m(A) < \infty$. Show that for $1 we have <math>L^q(A) \subseteq L^p(A)$.
- 5. Let M denote the set of measurable functions on [0, 1]. Given functions, $f, g \in M$ define

$$d(f,g) := \int_{[0,1]} \frac{|f-g|}{1+|f-g|} \, dm$$

This defines a metric on M. Show that a sequence of measurable functions f_n converges to f in measure if and only if $\lim_{n \to \infty} d(f_n, f) = 0$.

6. Let $\{q_1, q_2, q_3, \dots\}$ be some fixed enumeration of the rational numbers in \mathbb{R} . Define the function

$$f(x) = \sum_{q_j < x} 3^{-j}$$

Show that $0 < f(x) < \frac{1}{2}$ and f(x) is increasing on \mathbb{R} . Is f absolutely continuous on \mathbb{R} ? (Be sure to justify your answer).

- 7. Show that if f and g are absolutely continuous on [a, b] then $f \cdot g$ is absolutely continuous on [a, b].
- 8. Prove that if $A \subseteq \mathbb{R}$ and every subset of A is measurable then m(A) = 0.
- 9. Let μ denote counting measure on \mathbb{N} . Is the measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ σ -finite, where $\mathcal{P}(\mathbb{N})$ is the σ -algebra of subsets of \mathcal{N} ? Is this measure space complete? (Be sure to justify your answers)
- 10. Let $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a function such that f(x,t) is a measurable function of x, for each $t \in \mathbb{R}$. Assume further that for each $x \in \mathbb{R}$, f(x,t) is a continuous function of t. If there exists an integrable function $g : \mathbb{R} \to \mathbb{R}$ such that for each $t \in \mathbb{R}$, the inequality $|f(x,t)| \leq g(x)$ holds for almost every $x \in \mathbb{R}$ then the function

$$F(t) = \int_{\mathbb{R}} f(x,t) \, dm(x)$$

is a continuous function of t.