Analysis Preliminary Examination

MAY 2006

- Unless a problem states otherwise you can assume that any unspecified measure is Lebesgue measure.

1. Let \mathcal{S} be the collection of all subsets of $[0,1)$ which can be written as a finite union of intervals of the form $[a, b) \subseteq[0,1)$. Show that \mathcal{S} is an algebra of sets, but is not a σ-algebra.
2. Let m^{*} denote Lebesgue outer measure on \mathbb{R}. Prove that m^{*} is countably subadditive. Use this to prove that $m^{*}(\mathbb{Q})=0$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable. Show that the function f^{\prime} is measurable.
4. Let A be a measurable subset of \mathbb{R} with $0<m(A)<\infty$. Show that for $1<p<q \leq \infty$ we have $L^{q}(A) \subseteq L^{p}(A)$.
5. Let M denote the set of measurable functions on $[0,1]$. Given functions, $f, g \in M$ define

$$
d(f, g):=\int_{[0,1]} \frac{|f-g|}{1+|f-g|} d m
$$

This defines a metric on M. Show that a sequence of measurable functions f_{n} converges to f in measure if and only if $\lim _{n \rightarrow \infty} d\left(f_{n}, f\right)=0$.
6. Let $\left\{q_{1}, q_{2}, q_{3}, \cdots\right\}$ be some fixed enumeration of the rational numbers in \mathbb{R}. Define the function

$$
f(x)=\sum_{q_{j}<x} 3^{-j}
$$

Show that $0<f(x)<\frac{1}{2}$ and $f(x)$ is increasing on \mathbb{R}. Is f absolutely continuous on \mathbb{R} ? (Be sure to justify your answer).
7. Show that if f and g are absolutely continuous on $[a, b]$ then $f \cdot g$ is absolutely continuous on $[a, b]$.
8. Prove that if $A \subseteq \mathbb{R}$ and every subset of A is measurable then $m(A)=0$.
9. Let μ denote counting measure on \mathbb{N}. Is the measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu) \sigma$-finite, where $\mathcal{P}(\mathbb{N})$ is the σ-algebra of subsets of \mathcal{N} ? Is this measure space complete? (Be sure to justify your answers)
10. Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x, t)$ is a measurable function of x, for each $t \in \mathbb{R}$. Assume further that for each $x \in \mathbb{R}, f(x, t)$ is a continuous function of t. If there exists an integrable function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that for each $t \in \mathbb{R}$, the inequality $|f(x, t)| \leq g(x)$ holds for almost every $x \in \mathbb{R}$ then the function

$$
F(t)=\int_{\mathbb{R}} f(x, t) d m(x)
$$

is a continuous function of t.

