Analysis Qualifying Exam January 2019

Submit six of the problems from part 1, and three of the problems from part 2. Start every problem on a new page, label your pages and write your student ID on each page.

1 Real Analysis

Throughout, m denotes Lebesgue measure. You may use without proof the Lebesgue dominated convergence theorem and Fubini's theorem.

- 1. Show: If $f_n \to f$ in $L^1(\mu)$, then $f_n \to f$ in measure.
- 2. Let μ_0 be a premeasure on an algebra \mathcal{A} , and let μ^* be the induced outer measure. Denote by \mathcal{A}_{σ} the collection of countable unions of sets in \mathcal{A} . Let E be μ^* -measurable. Show that there exists $B \subset E$ such that B is a countable intersection of sets from \mathcal{A}_{σ} and $\mu^*(E \setminus B) = 0$. (Hint: Use the definition of outer measure.)
- 3. Assume $f : \mathbb{R} \to \mathbb{C}$ is differentiable on \mathbb{R} and has a bounded derivative.
 - (a) Show that f has bounded variation on [a, b] for any finite a < b.
 - (b) Must f be of bounded variation on \mathbb{R} ? (Justify.)
- 4. Let f be real-valued.
 - (a) Give the definition of a measurable function.
 - (b) If f is measurable, is f^2 measurable? Justify.
 - (c) If f^2 is measurable, is f measurable? Justify.
- 5. Define $F : \mathbb{R} \to \mathbb{R}$ by

$$F(x) = \begin{cases} 0 & \text{if } x < 1, \\ 2 - x & \text{if } 1 \le x < 2, \\ 0 & \text{if } 2 \le x. \end{cases}$$

Let μ_F be the (signed!) Borel measure whose distribution function is F.

- (a) Calculate $\mu_F((0, 1))$ and $\mu_F((0, 1])$.
- (b) Find the distribution function of the total variation measure $|\mu_F|$.
- 6. Let $[a,b] \subset \mathbb{R}$ and let $f : [a,b] \to \mathbb{R}$ be a bounded Borel measurable function. Prove that f is Riemann integrable if and only if it is continuous almost everywhere.
- 7. Let $f : \mathbb{R} \to \mathbb{R}$ be bounded and Lebesgue measureable, such that

$$\lim_{h \to 0} \int_0^1 \frac{|f(x+h) - f(x)|}{h} dx = 0.$$

Show that f is a.e. constant on the interval [0, 1].

8. Prove Egorov's theorem: Let $f_n : [0,1] \to \mathbb{R}$ be a sequence of measurable functions which converge almost everywhere to a measurable function $f : [0,1] \to \mathbb{R}$. Then for every $\epsilon > 0$ there exists a measurable set $E \subset [0,1]$ with measure $|E| < \epsilon$ such that f_n converges to f uniformly on $[0,1] \setminus E$.

Hint: Consider the sets $E_m(k) = \bigcap_{m \ge n} \{x : |f_m(x) - f(x)| < \frac{1}{k}\}.$

9. Let μ be a finite measure that is singular with respect to Lebesgue measure. Show that

$$\lim_{\epsilon \to 0} \frac{\mu([x-\epsilon, x+\epsilon])}{2\epsilon} = 0.$$

Hint: Lebesgue differentiation.

2 Complex and Functional Analysis

- 10. Assume $f : \mathbb{C} \to \mathbb{C}$ is analytic on $\mathbb{C} \setminus [-1, 1]$ and continuous on all of \mathbb{C} . Prove that f is entire.
- 11. (a) State the maximum modulus theorem.
 - (b) Let f be a holomorphic function mapping the unit disk into the unit circle. Show that f is constant.
- 12. Let f be holomorphic on \mathbb{C} and assume that there exists c > 0 such that

$$|f(z)| \le c(1 + \sqrt{|z|})^5$$

for all complex z. Show that f is a polynomial. What can you say about the degree of this polynomial?

- 13. Let (X, || ||) be a normed space. Prove that if every linear functional on X is continuous, then X is finite dimensional.
- 14. (a) State Riesz Representation Theorem on Hilbert spaces.
 - (b) Use Riesz Representation Theorem to show that for every Hilbert space H, H is isometrically isomorphic to H^* .
- 15. (a) State Hahn-Banach Theorem.
 - (b) Let (X, || ||) be a normed space, $x_0 \in X$, $x_0 \neq 0$. Prove that $\exists f \in X^*$ with ||f|| = 1and $f(x_0) = ||x_0||$.