## Analysis Qualifying Exam January 2019

Submit six of the problems from part 1, and three of the problems from part 2. Start every problem on a new page, label your pages and write your student ID on each page.

## 1 Real Analysis

Throughout, $m$ denotes Lebesgue measure. You may use without proof the Lebesgue dominated convergence theorem and Fubini's theorem.

1. Show: If $f_{n} \rightarrow f$ in $L^{1}(\mu)$, then $f_{n} \rightarrow f$ in measure.
2. Let $\mu_{0}$ be a premeasure on an algebra $\mathcal{A}$, and let $\mu^{*}$ be the induced outer measure. Denote by $\mathcal{A}_{\sigma}$ the collection of countable unions of sets in $\mathcal{A}$. Let $E$ be $\mu^{*}$-measurable. Show that there exists $B \subset E$ such that $B$ is a countable intersection of sets from $\mathcal{A}_{\sigma}$ and $\mu^{*}(E \backslash B)=0$. (Hint: Use the definition of outer measure.)
3. Assume $f: \mathbb{R} \rightarrow \mathbb{C}$ is differentiable on $\mathbb{R}$ and has a bounded derivative.
(a) Show that $f$ has bounded variation on $[a, b]$ for any finite $a<b$.
(b) Must $f$ be of bounded variation on $\mathbb{R}$ ? (Justify.)
4. Let $f$ be real-valued.
(a) Give the definition of a measurable function.
(b) If $f$ is measurable, is $f^{2}$ measurable? Justify.
(c) If $f^{2}$ is measurable, is $f$ measurable? Justify.
5. Define $F: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
F(x)= \begin{cases}0 & \text { if } x<1 \\ 2-x & \text { if } 1 \leq x<2 \\ 0 & \text { if } 2 \leq x\end{cases}
$$

Let $\mu_{F}$ be the (signed!) Borel measure whose distribution function is $F$.
(a) Calculate $\mu_{F}((0,1))$ and $\mu_{F}((0,1])$.
(b) Find the distribution function of the total variation measure $\left|\mu_{F}\right|$.
6. Let $[a, b] \subset \mathbb{R}$ and let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded Borel measurable function. Prove that $f$ is Riemann integrable if and only if it is continuous almost everywhere.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be bounded and Lebesgue measureable, such that

$$
\lim _{h \rightarrow 0} \int_{0}^{1} \frac{|f(x+h)-f(x)|}{h} d x=0
$$

Show that $f$ is a.e. constant on the interval $[0,1]$.
8. Prove Egorov's theorem: Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be a sequence of measurable functions which converge almost everywhere to a measurable function $f:[0,1] \rightarrow \mathbb{R}$. Then for every $\epsilon>0$ there exists a measurable set $E \subset[0,1]$ with measure $|E|<\epsilon$ such that $f_{n}$ converges to $f$ uniformly on $[0,1] \backslash E$.
Hint: Consider the sets $E_{m}(k)=\cap_{m \geq n}\left\{x:\left|f_{m}(x)-f(x)\right|<\frac{1}{k}\right\}$.
9. Let $\mu$ be a finite measure that is singular with respect to Lebesgue measure. Show that

$$
\lim _{\epsilon \rightarrow 0} \frac{\mu([x-\epsilon, x+\epsilon])}{2 \epsilon}=0 .
$$

Hint: Lebesgue differentiation.

## 2 Complex and Functional Analysis

10. Assume $f: \mathbb{C} \rightarrow \mathbb{C}$ is analytic on $\mathbb{C} \backslash[-1,1]$ and continuous on all of $\mathbb{C}$. Prove that $f$ is entire.
11. (a) State the maximum modulus theorem.
(b) Let $f$ be a holomorphic function mapping the unit disk into the unit circle. Show that $f$ is constant.
12. Let $f$ be holomorphic on $\mathbb{C}$ and assume that there exists $c>0$ such that

$$
|f(z)| \leq c(1+\sqrt{|z|})^{5}
$$

for all complex $z$. Show that $f$ is a polynomial. What can you say about the degree of this polynomial?
13. Let $(X,\| \|)$ be a normed space. Prove that if every linear functional on $X$ is continuous, then $X$ is finite dimensional.
14. (a) State Riesz Representation Theorem on Hilbert spaces.
(b) Use Riesz Representation Theorem to show that for every Hilbert space $H, H$ is isometrically isomorphic to $H^{*}$.
15. (a) State Hahn-Banach Theorem.
(b) Let $(X,\| \|)$ be a normed space, $x_{0} \in X, x_{0} \neq 0$. Prove that $\exists f \in X^{*}$ with $\|f\|=1$ and $f\left(x_{0}\right)=\left\|x_{0}\right\|$.

