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1. (25 points) Let Q2 C RY be an open and bounded domain, and let u : Q — R be a
harmonic function.
(i) Prove that
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(ii) If, in addition, m < u(z) < M for all z € Q, then prove that
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2. (25 points) Let
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and assume that u € C?(€) is a solution of the problem
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3. (25 points) Use the method of characteristics to solve the problem

u? 4+ yu, —u =0
u(r,1) == +1 (z € R).

4. (25 points) Let Q C RY be a connected, bounded, open set with smooth boundary.
Let f: € x [0,00) — R be a smooth function such that there exists M > 0 for which

/fQ(x,t)dx < M?for all t > 0.
Q

Let u € C?(Q2 x [0,00)) be the solution of the nonhomogeneous heat equation
u—Au=f inx(0,00)
u(-,0) =0 in Q
u=0 on 08 x [0, 00).



(i) Show that there exists a constant C' > 0 such that

/u2(1:,t)d:c < C for all t > 0.
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(ii) Would the statement in part (i) still be true if the Dirichlet boundary conditions were
replaced by the Neumann boundary conditions
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If yes, prove your claim. If no, provide a counterexample.



