Department of Mathematics - North Dakota State University Applied Mathematics Qualifying Exam MAY 2008 Subject: MATH 785 Partial Differential Equations II

1. (25 points) Let $\Omega \subseteq \mathbb{R}^N$ be an open and bounded domain, and let $f \in L^2(\Omega)$ be such that $f \leq 0$ a.e. in Ω . If $g : \mathbb{R} \to \mathbb{R}$ is nondecreasing and g(0) = 0, show that the weak solution of the problem

$$\begin{cases} -\bigtriangleup u + g(u) = f & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega. \end{cases}$$

is such that $u \leq 0$ a.e. in Ω .

2. (25 points) Let $\Omega \subseteq \mathbb{R}^N$ be an open and bounded domain which satisfies the interior ball condition at every point on its boundary, and let $f, \varphi, c, \alpha : \overline{\Omega} \to \mathbb{R}$ be continuous functions such that $c(x) \leq 0$ for all $x \in \Omega$ and $\alpha(x) \geq 0$ for all $x \in \partial \Omega$. Let $v, w \in C^2(\Omega) \cap C^1(\overline{\Omega})$ be two solutions of the Robin problem

$$\begin{cases} \Delta u + cu = f & \text{in } \Omega\\ \frac{\partial u}{\partial \nu} + \alpha u = \varphi & \text{on } \partial \Omega. \end{cases}$$

Prove that v - w is a constant function in Ω . If $\alpha > 0$ in Ω deduce that the above problem has at most one solution in $C^2(\Omega) \cap C^1(\overline{\Omega})$.

3. (25 points) Let $\Omega \subseteq \mathbb{R}^N$ be an open, bounded, convex domain containing the origin, and assume that $\partial \Omega \in C^2$. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous, and define $F(z) := \int_{-\infty}^{z} f(t) dt$.

(i) Explain (but do not proceed with the lengthy computations) how you would prove that any solution $u \in C^2(\overline{\Omega})$ of

$$\begin{cases} -\bigtriangleup u = f(u) & \text{ in } \Omega\\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

satisfies Pohožaev's identity:

$$\left(\frac{N}{2}-1\right)\int_{\Omega}|Du|^{2}dx+\frac{1}{2}\int_{\partial\Omega}(\nu\cdot x)\left(\frac{\partial u}{\partial\nu}\right)^{2}dS=N\int_{\Omega}F(u)dx$$

(ii) Use the result in part (i) to prove that any eigenfunction φ of the operator $-\Delta$ with Dirichlet boundary conditions satisfies $\frac{\partial \varphi}{\partial \nu} \neq 0$.

4. (25 points) Let $\Omega \subset \mathbb{R}^N$ be an open, bounded domain, and let $f \in L^2(\Omega)$ be given. For $\varepsilon > 0$ define

$$\beta_{\varepsilon}(y) = \begin{cases} 0 & \text{if } y \ge 0, \\ \frac{y}{\varepsilon} & \text{if } y \le 0, \end{cases}$$

and let $u_{\varepsilon} \in H_0^1(\Omega)$ be the weak solution of the problem

$$\begin{cases} -\bigtriangleup u_{\varepsilon} + \beta_{\varepsilon}(u_{\varepsilon}) = f & \text{in } \Omega\\ u_{\varepsilon} = 0 & \text{on } \partial\Omega. \end{cases}$$

Prove that as $\varepsilon \to 0^+$ we have that $u_{\varepsilon} \rightharpoonup u$ weakly in $H_0^1(\Omega)$, where u is the unique solution of the variational inequality

$$\int_{\Omega} \nabla u \cdot \nabla (v - u) dx \ge \int_{\Omega} f(v - u) dx$$

for all $v \in H_0^1(\Omega)$, with $v \ge 0$ a.e. in Ω .