1. (25 points) Let $\Omega \subseteq \mathbb{R}^{N}$ be an open and bounded domain, and let $f \in L^{2}(\Omega)$ be such that $f \leq 0$ a.e. in Ω. If $g: \mathbb{R} \rightarrow \mathbb{R}$ is nondecreasing and $g(0)=0$, show that the weak solution of the problem

$$
\begin{cases}-\triangle u+g(u)=f & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

is such that $u \leq 0$ a.e. in Ω.
2. (25 points) Let $\Omega \subseteq \mathbb{R}^{N}$ be an open and bounded domain which satisfies the interior ball condition at every point on its boundary, and let $f, \varphi, c, \alpha: \bar{\Omega} \rightarrow \mathbb{R}$ be continuous functions such that $c(x) \leq 0$ for all $x \in \Omega$ and $\alpha(x) \geq 0$ for all $x \in \partial \Omega$. Let $v, w \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ be two solutions of the Robin problem

$$
\begin{cases}\triangle u+c u=f & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}+\alpha u=\varphi & \text { on } \partial \Omega .\end{cases}
$$

Prove that $v-w$ is a constant function in Ω. If $\alpha>0$ in Ω deduce that the above problem has at most one solution in $C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$.
3. (25 points) Let $\Omega \subseteq \mathbb{R}^{N}$ be an open, bounded, convex domain containing the origin, and assume that $\partial \Omega \in C^{2}$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous, and define $F(z):=\int_{0}^{z} f(t) d t$.
(i) Explain (but do not proceed with the lengthy computations) how you would prove that any solution $u \in C^{2}(\bar{\Omega})$ of

$$
\begin{cases}-\triangle u=f(u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

satisfies Pohožaev's identity:

$$
\left(\frac{N}{2}-1\right) \int_{\Omega}|D u|^{2} d x+\frac{1}{2} \int_{\partial \Omega}(\nu \cdot x)\left(\frac{\partial u}{\partial \nu}\right)^{2} d S=N \int_{\Omega} F(u) d x
$$

(ii) Use the result in part (i) to prove that any eigenfunction φ of the operator $-\triangle$ with Dirichlet boundary conditions satisfies $\frac{\partial \varphi}{\partial \nu} \neq 0$.
4. (25 points) Let $\Omega \subset \mathbb{R}^{N}$ be an open, bounded domain, and let $f \in L^{2}(\Omega)$ be given. For $\varepsilon>0$ define

$$
\beta_{\varepsilon}(y)= \begin{cases}0 & \text { if } y \geq 0 \\ \frac{y}{\varepsilon} & \text { if } y \leq 0\end{cases}
$$

and let $u_{\varepsilon} \in H_{0}^{1}(\Omega)$ be the weak solution of the problem

$$
\begin{cases}-\triangle u_{\varepsilon}+\beta_{\varepsilon}\left(u_{\varepsilon}\right)=f & \text { in } \Omega \\ u_{\varepsilon}=0 & \text { on } \partial \Omega .\end{cases}
$$

Prove that as $\varepsilon \rightarrow 0^{+}$we have that $u_{\varepsilon} \rightharpoonup u$ weakly in $H_{0}^{1}(\Omega)$, where u is the unique solution of the variational inequality

$$
\int_{\Omega} \nabla u \cdot \nabla(v-u) d x \geq \int_{\Omega} f(v-u) d x
$$

for all $v \in H_{0}^{1}(\Omega)$, with $v \geq 0$ a.e. in Ω.

