Department of Mathematics - North Dakota State University
 Applied Mathematics Qualifying Exam
 August 2008

Subject: MATH 760 Ordinary Differential Equations

1. (15 points) Prove that for any pair of numbers $\left(t_{0}, y_{0}\right)$ a solution to the IVP $y^{\prime}=$ $t^{3}-y^{3}, y\left(t_{0}\right)=y_{0}$ may be extended to the interval $\left[t_{0}, \infty\right)$.
2. (15 points) What is the smallest natural number n such that there exists a smooth function f with the following property: ODE $y^{(n)}=f\left(t, y, \ldots, y^{(n-1)}\right)$ has solutions $y_{1}=$ $t-t^{3} / 6$, and $y_{2}=\sin t ?$
3. (15 points) Find all values of parameters a, b such that the equation $y^{I V}+a y^{\prime \prime \prime}+$ $y^{\prime \prime}+b y^{\prime}+y=0$ is asymptotically stable.
4. (20 points) Find all values of a parameter α such that system $y^{\prime}=A(t) y$ is Lyapunov stable, where

$$
A(t)=\left(\begin{array}{cc}
0 & \alpha \\
0 & 0
\end{array}\right) \quad \text { if } 0 \leq t<2, \quad A(t)=\left(\begin{array}{cc}
0 & 0 \\
-\alpha & 0
\end{array}\right) \text { if } 2 \leq t<4, \quad A(t+4) \equiv A(t)
$$

5. (15 points) Assume functions p, q are continuous. Let y_{1}, y_{2} be linear independent solutions of equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 .
$$

Show that function $\frac{y_{1}}{y_{2}}$ has no points of local maximum.
6. (20 points) Find all the parameters $a \in R$ for which the equation

$$
y^{\prime}=\left(a+\cos ^{2} t\right) y+1
$$

has exactly one periodic solution.

