Department of Mathematics - North Dakota State University Applied Mathematics Qualifying Exam August 2008 Subject: MATH 781 Control Theory

1. (20 points) The transfer function of system is equal to

$$W(s) = \frac{1}{s^3 + s^2 + s + \gamma},$$

where $\gamma \in (0, 1)$. Find the maximal number μ such that system is absolutely stable in the class of differentiable nonlinearities φ satisfying inequalities $0 < \frac{\varphi(s)}{s} < \mu$ for all s.

2. (15 points) Consider a system with the transfer function

$$W(s) = \frac{a}{s^2 + bs + 1},$$

where a > 0, b > 0. Using the circle criterion, find a positive numbers μ such that system is absolutely stable in the class of time-varying nonlinearities φ satisfying the sector condition

$$0 \leq \frac{\varphi(y,t)}{y} \leq \mu$$

for all $y \neq 0, t$.

3. (10 points) Find all parameters a, b, c such that system

$$\dot{x} = \begin{pmatrix} 0 & b \\ c & 1 \end{pmatrix} x + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u,$$
$$y = (a, 0) x$$

(i) is controllable,

(ii) is stabilizable,

(iii) is observable.

4. (25 points) Assume A, S, G are $n \times n$ -matrices, S and G are Hermitian, $S \leq 0$. Assume H_0 is the anti-Hurwitz solution of the algebraic Riccati equation $H_0A + A^*H_0 + G - H_0SH_0 = 0$. Assume a Hermitian matrix function $H(\cdot)$ satisfies the differential Riccati equation

$$\dot{H} + HA + A^*H + G - HSH = 0.$$

Denote $A_{H_0} = A - SH_0$.

(i) Prove the following equality:

$$\dot{H} + (H - H_0)A_{H_0} + A^*_{H_0}(H - H_0) - (H - H_0)S(H - H_0) = 0.$$
(ii) Assume $H(0) > H_0$. Show that $H(t) > H_0$ for all $t > 0$, and $H(t) \to H_0$ as $t \to \infty$.

5. (15 points) Given function $R(s) = \frac{s+2}{s^2-1}$, compute the minimum of $||R - X||_{\infty}$ over all rational functions $X \in H_{\infty}$.

6. (15 points) For functions $T_1 = \frac{s-1}{s+1}$, $T_2 = \frac{1}{s+3}$ find $\min ||T_1 - T_2Q||$ over the set of rational functions $Q \in H_{\infty}$.