Problems for Preliminary Exam
 Applied Mathematics
 June 2015

Part I

Answer any FIVE (5) problems from Part I. All problems have 10 points.

1. Suppose that $u(x, t)$ solves

$$
\left\{\begin{array}{ll}
u_{t t}-\Delta u=0, & \text { in } \mathbb{R}^{3} \times(0, \infty) \\
u=g, & u_{t}=h,
\end{array} \text { on } \mathbb{R}^{3} \times\{t=0\},\right.
$$

where g and h are smooth and have compact support. Show that there exists a constant λ such that

$$
|u(x, t)| \leq \frac{\lambda}{t}
$$

for $x \in \mathbb{R}^{3}$ and $t>0$.
2. Verify that if $n>1$, the unbounded function $u(x)=\log \log \left(1+\frac{1}{|x|}\right)$ belongs to $W^{1, n}(U)$, where U is an open unit ball in \mathbb{R}^{n} with center at the origin.
3. Assume u is a smooth solution of

$$
L u=-\sum_{i, j=1}^{n} a^{i j} u_{x_{i} x_{j}}=f
$$

in U, and $u=0$ on ∂U. Assume f is bounded and L is uniformly elliptic with smooth coefficients. Fix $x_{0} \in \partial U$. A barrier at x_{0} is a C^{2} function w such that

$$
L w \geq 1 \text { in } U, \quad w\left(x_{0}\right)=0, \quad w \geq 0 \text { on } \partial U .
$$

Show that if w is a barrier at x_{0}, there exists a constant C such that

$$
\left|D u\left(x_{0}\right)\right| \leq C\left|\frac{\partial w}{\partial \nu}\left(x_{0}\right)\right|,
$$

where ν is the outer unit normal to U.
4. Write down an explicit formula for a solution of

$$
\begin{cases}u_{t}-\Delta u+c u=f, & \text { in } \mathbb{R}^{n} \times(0, \infty) \\ u=g, & \text { on } \mathbb{R}^{n} \times\{t=0\},\end{cases}
$$

where g and h are smooth functions and $c \in \mathbb{R}$.
5. Assume u is a harmonic function in an open bounded set U. Prove that the function $v=\|D u\|^{2}$ satisfies inequality $-\Delta v \leq 0$ in U.
6. Write down an explicit formula for a solution of

$$
\begin{cases}u_{t}+b \cdot D u+c u=0, & \text { in } \mathbb{R}^{n} \times(0, \infty) \\ u=g, & \text { on } \mathbb{R}^{n} \times\{t=0\},\end{cases}
$$

where g is a smooth functions and $c \in \mathbb{R}$ and $b \in \mathbb{R}^{n}$ are constants.

Part II

Answer any FIVE (5) problems from Part II. All problems have 10 points.

1. For which a each solution to

$$
\dot{x}=|x|^{a}
$$

is defined globally (i.e., for all $t \in \mathbb{R}$)?
2. Suppose that the linear operator $\boldsymbol{A}: \mathbb{R}^{k} \longrightarrow \mathbb{R}^{k}$ has a real eigenvalue $\lambda<0$. Show that the equation $\dot{\boldsymbol{x}}=\boldsymbol{A x}$ has at least one nontrivial solution $t \mapsto \boldsymbol{x}(t)$ such that

$$
\lim _{t \rightarrow \infty} x(t)=0
$$

3. For which $a \in \mathbb{C}$ and $b \in \mathbb{C}$ all the solutions to

$$
\ddot{x}+a \dot{x}+b x=0
$$

are bounded for all $t \in \mathbb{R}$?
4. Determine the stability properties of the equilibrium $(x, \dot{x})=(0,0)$ for the equation

$$
\ddot{x}+x^{n}=0, \quad n \in \mathbb{N}=\{1,2, \ldots\} .
$$

5. For which α the system

$$
\dot{x}_{1}=x_{2}+\alpha x_{1}-x_{1}^{5}, \quad \dot{x}_{2}=-x_{1}-x_{2}^{5}
$$

has a stable equilibrium $\left(x_{1}, x_{2}\right)=(0,0)$?
6. Find the eigenvalues and eigenvectors for the linear operator

$$
L:=-\frac{d^{2}}{d x^{2}}
$$

with the boundary conditions $y(0)=y^{\prime}(1)=0$. Find Green's function for this operator.

