Problems for Preliminary Exam Applied Mathematics June 2015

Part I Answer any FIVE (5) problems from Part I. All problems have 10 points.

1. Suppose that u(x,t) solves

$$\begin{cases} u_{tt} - \Delta u = 0, & \text{in } \mathbb{R}^3 \times (0, \infty) \\ u = g, \quad u_t = h, & \text{on } \mathbb{R}^3 \times \{t = 0\}, \end{cases}$$

where g and h are smooth and have compact support. Show that there exists a constant λ such that

$$|u(x,t)| \le \frac{\lambda}{t},$$

for $x \in \mathbb{R}^3$ and t > 0.

2. Verify that if n > 1, the unbounded function $u(x) = \log \log \left(1 + \frac{1}{|x|}\right)$ belongs to $W^{1,n}(U)$, where U is an open unit ball in \mathbb{R}^n with center at the origin.

3. Assume u is a smooth solution of

$$Lu = -\sum_{i,j=1}^{n} a^{ij} u_{x_i x_j} = f$$

in U, and u = 0 on ∂U . Assume f is bounded and L is uniformly elliptic with smooth coefficients. Fix $x_0 \in \partial U$. A *barrier* at x_0 is a C^2 function w such that

 $Lw \ge 1$ in U, $w(x_0) = 0$, $w \ge 0$ on ∂U .

Show that if w is a barrier at x_0 , there exists a constant C such that

$$|Du(x_0)| \le C \Big| \frac{\partial w}{\partial \nu}(x_0) \Big|,$$

where ν is the outer unit normal to U.

4. Write down an explicit formula for a solution of

$$\begin{cases} u_t - \Delta u + cu = f, & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = g, & \text{on } \mathbb{R}^n \times \{t = 0\}, \end{cases}$$

where g and h are smooth functions and $c \in \mathbb{R}$.

5. Assume u is a harmonic function in an open bounded set U. Prove that the function $v = \|Du\|^2$ satisfies inequality $-\Delta v \leq 0$ in U.

6. Write down an explicit formula for a solution of

$$\begin{cases} u_t + b \cdot Du + cu = 0, & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = g, & \text{on } \mathbb{R}^n \times \{t = 0\}, \end{cases}$$

where g is a smooth functions and $c \in \mathbb{R}$ and $b \in \mathbb{R}^n$ are constants.

Part II Answer any FIVE (5) problems from Part II. All problems have 10 points.

1. For which *a* each solution to

 $\dot{x} = |x|^a$

is defined globally (i.e., for all $t \in \mathbb{R}$)?

2. Suppose that the linear operator $A : \mathbb{R}^k \longrightarrow \mathbb{R}^k$ has a real eigenvalue $\lambda < 0$. Show that the equation $\dot{x} = Ax$ has at least one nontrivial solution $t \mapsto x(t)$ such that

$$\lim_{t \to \infty} \boldsymbol{x}(t) = 0.$$

3. For which $a \in \mathbb{C}$ and $b \in \mathbb{C}$ all the solutions to

$$\ddot{x} + a\dot{x} + bx = 0$$

are bounded for all $t \in \mathbb{R}$?

4. Determine the stability properties of the equilibrium $(x, \dot{x}) = (0, 0)$ for the equation

$$\ddot{x} + x^n = 0, \quad n \in \mathbb{N} = \{1, 2, \ldots\}.$$

5. For which α the system

$$\dot{x}_1 = x_2 + \alpha x_1 - x_1^5, \quad \dot{x}_2 = -x_1 - x_2^5$$

has a stable equilibrium $(x_1, x_2) = (0, 0)$?

6. Find the eigenvalues and eigenvectors for the linear operator

$$L := -\frac{d^2}{dx^2}$$

with the boundary conditions y(0) = y'(1) = 0. Find Green's function for this operator.