Problems for Preliminary Exam
 Applied Mathematics
 September 2015

Part I
 All problems have 10 points.

1. Let in the equation

$$
\dot{x}+a(t) x=f(t)
$$

$a(t) \geq C>0, f(t) \rightarrow 0$ as $t \rightarrow \infty$, and functions a and f are continuous. Prove that each solution to this equation approaches zero as $t \rightarrow \infty$.
2. For which a each solution to

$$
\dot{x}=\left(x^{2}+e^{t}\right)^{a}
$$

can be continued to the whole real line $t \in \mathbf{R}$?
3. Does there exist a real 2×2 matrix \boldsymbol{S} such that

$$
e^{S}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -4
\end{array}\right] ?
$$

4. Investigate the stability of the trivial equilibrium of

$$
\begin{aligned}
\dot{x} & =-2 y-x^{3}, \\
\dot{y} & =3 x-4 y^{3} .
\end{aligned}
$$

5. Find Green's function for the linear differential operator

$$
L=\frac{d^{2}}{d x^{2}}+1, \quad y(0)=y(\pi), \quad y^{\prime}(0)=y^{\prime}(\pi)
$$

Part II

All problems have 10 points.

1. Let U be bounded with a C^{1} boundary. Show that a "typical" function $u \in L^{p}(U)$, $1 \leq p<\infty$ does not have a trace on ∂U. More precisely, prove there does not exist a bounded linear operator

$$
T: L^{p}(U) \rightarrow L^{p}(\partial U)
$$

such that $T u=\left.u\right|_{\partial U}$ whenever $u \in C(\bar{U}) \cap L^{p}(U)$.
2. Let u be a smooth solution of

$$
L u=-\sum_{i, j=1}^{n} a^{i j} u_{x_{i} x_{j}}=0
$$

in U, where L is uniformly elliptic with smooth coefficients. Define $v:=|D u|^{2}+\lambda u^{2}$. Show that $L v \leq 0$ in U, if λ is large enough. Deduce the following:

$$
\|D u\|_{L^{\infty}(U)} \leq C\left(\|D u\|_{L^{\infty}(\partial U)}+\|u\|_{L^{\infty}(\partial U)}\right),
$$

where C is some constant.

3. Let

$$
L u=-\sum_{i, j=1}^{n}\left(a^{i j} u_{x_{i}}\right)_{x_{j}}+c u
$$

where L is uniformly elliptic with smooth coefficients. Prove that there exists a constant $\mu>0$ such that the corresponding bilinear form $B[\cdot, \cdot]$ satisfies the hypotheses of the Lax-Milgram Theorem, provided $c(x) \geq-\mu$, for $x \in U$.
4. Prove that there exists a constant C, depending only on n (dimension of the space), such that

$$
\max _{B(0,1)}|u| \leq C\left(\max _{\partial B(0,1)}|g|+\max _{B(0,1)}|f|\right),
$$

whenever u is a smooth solution of

$$
\begin{cases}-\Delta u=f, & \text { in } B^{0}(0,1) \\ u=g, & \text { on } \partial B(0,1)\end{cases}
$$

where $B^{0}(0,1)$ and $B(0,1)$ are open and closed unit ball respectively with center at the origin of \mathbb{R}^{n}.
5. Assume u is a solution of the heat equation $u_{t}-\Delta u=0$ in $U_{T}=U \times(0, T]$, where U is an open bounded set. Prove that function $v=\|D u\|^{2}+u_{t}^{2}$ satisfies inequality $v_{t}-\Delta v \leq 0$ in U_{T}.

