Problems for Preliminary Exam
 Applied Mathematics, ODE

January 2024

- Answer any 6 problems. If you attempt all the problems, clearly indicate which 6 you want to be graded. Otherwise the first 6 will be graded.

1. Find a solution of equation

$$
\ddot{x}+x=x^{2}
$$

that is decreasing and tending to one as $t \rightarrow \infty$.
2. Solve the equation

$$
\left(t^{2}+y^{2}+t\right) d t+y d y=0
$$

3. For which integer b and c the equation

$$
y^{\prime \prime \prime}+b^{2} y^{\prime}=\sin t+c \sin ^{2} t
$$

has a periodic solution?
4. Consider the equation

$$
t y^{\prime}+a y=f(t),
$$

where a is a positive constant, $f(t) \rightarrow b$ as $t \rightarrow 0$. Prove that there exists a unique solution y that is bounded as $t \rightarrow 0$. Find the limit of this solution at zero.
5. For which n there exist continuous functions p_{0}, \ldots, p_{n-1} such that equation

$$
y^{(n)}+p_{n-1}(t) y^{(n-1)}+\ldots+p_{0}(t) y=0
$$

has a solution $y(t)=t^{3}$.
6. Is it true that zero solution of system

$$
x^{\prime}=x-y, \quad y^{\prime}=5 x-5 y
$$

is asymptotically stable?
7. Solve the initial value problem

$$
(t+2 y) y^{\prime}=1, \quad y(0)=-1
$$

