NORTH DAKOTA STATE UNIVERSITY

MATH 784

Prelim August 2023

• Answer any 6 problems. If you attempt all the problems, clearly indicate which 6 you want to be graded. Otherwise the first 6 will be graded.

Problem 1. Let D be a bounded domain in \mathbb{R}^n and u(x) is defined on D. Show that for a given function $f: D \to \mathbb{R}$ a solution of the boundary value problem

$$\begin{cases} \Delta(\Delta u) = f, & \text{in } D\\ u = \Delta u = 0, & \text{on } \partial D, \end{cases}$$

is unique (provided it exists).

Problem 2. Let $u(x) \ge 0$ be continuous in closed bounded domain $\overline{D} \subset \mathbb{R}^n$ and Δu is continuous in \overline{D} . Suppose that

$$\Delta u = u^2, \quad u\big|_{\partial D} = 0.$$

Prove that $u \equiv 0$, in D. What can you say about u(x) when the condition $u(x) \ge 0$ in D is dropped?

Problem 3. Write down an explicit formula for a function u(x, t) solving

$$\begin{cases} u_t + b \cdot Du + cu = \Delta u, & \text{in } \mathbb{R}^n \times (0, \infty) \\ u(x, 0) = f(x), & \text{on } \mathbb{R}^n \times \{t = 0\}, \end{cases}$$

where $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$ are constants.

,

Problem 4. Assume u is a harmonic function in an open bounded set U. Prove that the function $v = ||Du||^2$ satisfies inequality $-\Delta v \leq 0$ in U.

Problem 5. Consider one-dimensional problem:

$$u_t = u_{xx}, \quad x > 0, \quad t > 0,$$

$$u(x,0) = g(x), \quad x > 0$$

 $u(0,t) = 0, \quad t > 0,$

where g is continuous and bounded for $x \ge 0$ and g(0) = 0. Find a formula for the solution u(x,t).

Problem 6. Let

$$Lu = -\sum_{i,j=1}^{n} \left(a^{ij}u_{x_i}\right)_{x_j} + cu_{x_j}$$

where L is uniformly elliptic with smooth coefficients. Prove that there exists a constant $\mu > 0$ such that the corresponding bilinear form $B[\cdot, \cdot]$ satisfies the hypotheses of the Lax-Milgram Theorem, provided $c(x) \ge -\mu$, for $x \in U$.

Problem 7. Verify that if n > 1, the unbounded function

$$u(x) = \log \log \left(1 + \frac{1}{|x|}\right)$$

belongs to $W^{1,n}(U)$, where U is an open unit ball in \mathbb{R}^n with center at the origin.