North Dakota State University

MATH 784
Prelim August 2023

- Answer any 6 problems. If you attempt all the problems, clearly indicate which 6 you want to be graded. Otherwise the first 6 will be graded.

Problem 1. Let D be a bounded domain in \mathbb{R}^{n} and $u(x)$ is defined on D. Show that for a given function $f: D \rightarrow \mathbb{R}$ a solution of the boundary value problem

$$
\begin{cases}\Delta(\Delta u)=f, & \text { in } D \\ u=\Delta u=0, & \text { on } \partial D\end{cases}
$$

is unique (provided it exists).
Problem 2. Let $u(x) \geqslant 0$ be continuous in closed bounded domain $\bar{D} \subset \mathbb{R}^{n}$ and Δu is continuous in \bar{D}. Suppose that

$$
\Delta u=u^{2},\left.\quad u\right|_{\partial D}=0
$$

Prove that $u \equiv 0$, in D. What can you say about $u(x)$ when the condition $u(x) \geqslant 0$ in D is dropped?

Problem 3. Write down an explicit formula for a function $u(x, t)$ solving

$$
\begin{cases}u_{t}+b \cdot D u+c u=\Delta u, & \text { in } \mathbb{R}^{n} \times(0, \infty) \\ u(x, 0)=f(x), & \text { on } \mathbb{R}^{n} \times\{t=0\}\end{cases}
$$

where $b \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$ are constants.
Problem 4. Assume u is a harmonic function in an open bounded set U. Prove that the function $v=\|D u\|^{2}$ satisfies inequality $-\Delta v \leq 0$ in U.

Problem 5. Consider one-dimensional problem:

$$
u_{t}=u_{x x}, \quad x>0, \quad t>0,
$$

$$
\begin{gathered}
u(x, 0)=g(x), \quad x>0 \\
u(0, t)=0, \quad t>0,
\end{gathered}
$$

where g is continuous and bounded for $x \geqslant 0$ and $g(0)=0$. Find a formula for the solution $u(x, t)$.

Problem 6. Let

$$
L u=-\sum_{i, j=1}^{n}\left(a^{i j} u_{x_{i}}\right)_{x_{j}}+c u
$$

where L is uniformly elliptic with smooth coefficients. Prove that there exists a constant $\mu>0$ such that the corresponding bilinear form $B[\cdot, \cdot]$ satisfies the hypotheses of the Lax-Milgram Theorem, provided $c(x) \geqslant-\mu$, for $x \in U$.

Problem 7. Verify that if $n>1$, the unbounded function

$$
u(x)=\log \log \left(1+\frac{1}{|x|}\right)
$$

belongs to $W^{1, n}(U)$, where U is an open unit ball in \mathbb{R}^{n} with center at the origin.

