Problems for Preliminary Exam
Applied Mathematics
August 2022

Ordinary Differential Equations

1. Show that every integral curve of
 \[
 \dot{x} = \sqrt{\frac{x^2 + 1}{t^4 + 1}}, \quad x(t) \in \mathbb{R},
 \]
 has two horizontal asymptotes.

2. Is there a bounded solution to (here \(x(t) \in \mathbb{R}\))
 \[
 \dot{x} - x = \cos t - \sin t?
 \]

3. Let
 \[
 \dot{x} = f(x), \quad x(t) \in \mathbb{R}^n, \quad f \in C^1, \quad f: \mathbb{R}^n \to \mathbb{R}^n, \quad f(\dot{x}) = 0, \quad \dot{x} \in \mathbb{R}^n.
 \]
 Give a definition for \(\dot{x}\) to be Lyapunov stable, asymptotically stable, or unstable. Formulate the definition for a differentiable \(V: \mathbb{R}^n \to \mathbb{R}\) to be a Lyapunov function for \(\dot{x}\), a strict Lyapunov function for \(\dot{x}\).
 Formulate and prove Lyapunov’s theorem on (Lyapunov, asymptotic) stability of \(\dot{x}\) by direct Lyapunov method (i.e., by assuming existence of a (strict) Lyapunov function).

4. Sketch the phase portrait of
 \[
 \dot{x} = 1 + 2 \sin x, \quad x(t) \in \mathbb{R}.
 \]

5. For which \(\alpha\) the trivial equilibrium of
 \[
 \begin{align*}
 \dot{x}_1 &= \alpha x_1 - x_2, \\
 \dot{x}_2 &= \alpha x_2 - x_3, \\
 \dot{x}_3 &= \alpha x_3 - x_1,
 \end{align*}
 \]
 is Lyapunov stable, asymptotically stable, unstable?

6. Find Green’s function for
 \[
 y'' + y = f(x), \quad y(0) = y(\pi), \quad y'(0) = y'(\pi).
 \]

7. Show that the problem
 \[
 \dot{x} = 2 \sqrt{t x}, \quad x(0) = 0
 \]
 has more than one solution passing through the origin. For the full credit describe all the solution to this problem.
 Which condition(s) of the existence and uniqueness theorem fail?