Problems for Preliminary Exam
 Applied Mathematics
 August 2018

Part I
 All problems have 10 points.

1. Derive the Taylor series for $x(t)=\sin t$ by applying the Picard method to the first order system corresponding to

$$
\ddot{x}=x, \quad x(0)=0, \quad \dot{x}(0)=1
$$

2. Let A be $k \times k$ real matrix, where k is odd. Show that there exists a nonperiodic solution to $\dot{x}=A x$.
3. Study the stability properties of the trivial solution in the following problem:

$$
\begin{gathered}
\dot{x_{1}}=x_{2}-x_{1}+x_{1} x_{2} \\
\dot{x_{2}}=x_{1}-x_{2}-x_{1}^{2}-x_{2}^{3}
\end{gathered}
$$

4. Is the solution to

$$
\dot{x}=4 x-t^{2} x, \quad x(0)=0
$$

Lyapunov stable, asymptotically stable, or neither?
5. Prove that all the solutions to $\dot{x}=\frac{1}{1+t^{2}+x^{2}}$, are bounded for all real t.

Part II

All problems have 10 points.

1. Find the solution to

$$
x^{2} u_{x}+x y u_{y}=u^{2}
$$

which passes through the curve $u=1, x=y^{2}$.
2. Solve the initial value problem

$$
u_{t t}-c^{2} u_{x x}=\cos x, \quad u(x, 0)=\sin x, \quad u_{t}(x, 0)=1+x
$$

3. Show that the operator $A=\frac{d^{4}}{d x^{4}}$ defined on the domain

$$
D=\left\{f \in C^{(4)}[0, l] \mid f(0)=f(l)=f^{\prime \prime}(0)=f^{\prime \prime}(l)=0\right\}
$$

has real and nonnegative eigenvalues.
4. Let $\Omega \subset \mathbb{R}^{n}$ be a smooth bounded domain. Show that there exists at most one solution to

$$
\Delta u=0, \quad x \in \Omega, \quad u=f \text { on } \partial \Omega
$$

What can you say about the same problem with the boundary condition $\partial_{\nu} u=f$ on $\partial \Omega$, where ν is the outward normal to the boundary of Ω ?
5. Find the solution to

$$
u_{t}=\Delta u-c u \quad \text { in } \mathbb{R}^{n} \times(0, \infty)
$$

with the initial condition

$$
u(x, 0)=g(x) \quad \text { on } \mathbb{R}^{n}
$$

