Problems for Preliminary Exam Applied Mathematics May 2016

Part I All problems have 10 points.

1. Prove that all the solutions to

$$\dot{x} = \frac{1}{1 + t^2 + x^2}$$

are bounded for all $t \in \mathbf{R}$.

2. Can the graphs of two solutions of the given ODE cross on the plane (t, x)? Be tangent to each other?

(a)
$$\dot{x} = t + x^2$$
, (b) $\ddot{x} = t + x^2$.

3. Explain clearly if an asymptotically stable equilibrium become unstable in Lyapunov's sense under linearization?

4. Determine the stability properties of the origin for the system

$$\dot{x} = -xy^4,$$

$$\dot{y} = yx^4.$$

5. For the boundary problem

$$y'' + y = f(x), \quad y(0) = y(\pi), \quad y'(0) = y'(\pi)$$

find Green's function.

Part II All problems have 10 points.

1. Let $u(x) \ge 0$ be continuous in closed bounded domain $\overline{D} \subset \mathbb{R}^n$ and Δu is continuous in \overline{D} . Suppose that

$$\Delta u = u^2, \quad u\big|_{\partial D} = 0.$$

Prove that $u \equiv 0$, in D. What can you say about u(x) when the condition $u(x) \ge 0$ in D is dropped?

2. Assume that U is a connected, open, bounded set. Show that constant functions are the only smooth solution of the Neumann boundary-value problem:

$$\begin{cases} -\Delta u = 0, & \text{in } U\\ \frac{\partial u}{\partial \nu} = 0, & \text{on } \partial U. \end{cases}$$

3. Assume

$$\hat{u}_k
ightarrow \hat{u}$$
 weakly in $L^2(0,T; H^1_0(U)),$

and

$$\hat{u}'_k \rightharpoonup \hat{v} \quad \text{weakly in} \quad L^2(0,T;H^{-1}(U)),$$

where $U \subset \mathbb{R}^n$ is an open, bounded set. Prove that $\hat{v} = \hat{u}'$.

4. Suppose that u(x,t) solves

$$\begin{cases} u_{tt} - \Delta u = 0, & \text{in } \mathbb{R}^3 \times (0, \infty) \\ u = g, \quad u_t = h, & \text{on } \mathbb{R}^3 \times \{t = 0\}, \end{cases}$$

where g and h are smooth and have compact support. Show that there exists a constant λ such that

$$|u(x,t)| \le \frac{\lambda}{t},$$

for $x \in \mathbb{R}^3$ and t > 0.

5. Give an example of a continuous function on [0, 1] which has classical derivative defined almost everywhere, but which is not weakly differentiable.