Problems for Preliminary Exam
 Applied Mathematics
 May 2016

Part I
 All problems have 10 points.

1. Prove that all the solutions to

$$
\dot{x}=\frac{1}{1+t^{2}+x^{2}}
$$

are bounded for all $t \in \mathbf{R}$.
2. Can the graphs of two solutions of the given ODE cross on the plane (t, x) ? Be tangent to each other?

$$
\text { (a) } \quad \dot{x}=t+x^{2}, \quad \text { (b) } \quad \ddot{x}=t+x^{2} \text {. }
$$

3. Explain clearly if an asymptotically stable equilibrium become unstable in Lyapunov's sense under linearization?
4. Determine the stability properties of the origin for the system

$$
\begin{aligned}
& \dot{x}=-x y^{4}, \\
& \dot{y}=y x^{4} .
\end{aligned}
$$

5. For the boundary problem

$$
y^{\prime \prime}+y=f(x), \quad y(0)=y(\pi), \quad y^{\prime}(0)=y^{\prime}(\pi)
$$

find Green's function.

Part II

All problems have 10 points.

1. Let $u(x) \geq 0$ be continuous in closed bounded domain $\bar{D} \subset \mathbb{R}^{n}$ and Δu is continuous in \bar{D}. Suppose that

$$
\Delta u=u^{2},\left.\quad u\right|_{\partial D}=0
$$

Prove that $u \equiv 0$, in D. What can you say about $u(x)$ when the condition $u(x) \geq 0$ in D is dropped?
2. Assume that U is a connected, open, bounded set. Show that constant functions are the only smooth solution of the Neumann boundary-value problem:

$$
\begin{cases}-\Delta u=0, & \text { in } U \\ \frac{\partial u}{\partial \nu}=0, & \text { on } \partial U .\end{cases}
$$

3. Assume

$$
\hat{u}_{k} \rightharpoonup \hat{u} \quad \text { weakly in } \quad L^{2}\left(0, T ; H_{0}^{1}(U)\right),
$$

and

$$
\hat{u}_{k}^{\prime} \rightharpoonup \hat{v} \quad \text { weakly in } \quad L^{2}\left(0, T ; H^{-1}(U)\right),
$$

where $U \subset \mathbb{R}^{n}$ is an open, bounded set. Prove that $\hat{v}=\hat{u}^{\prime}$.
4. Suppose that $u(x, t)$ solves

$$
\begin{cases}u_{t t}-\Delta u=0, & \text { in } \mathbb{R}^{3} \times(0, \infty) \\ u=g, \quad u_{t}=h, & \text { on } \mathbb{R}^{3} \times\{t=0\}\end{cases}
$$

where g and h are smooth and have compact support. Show that there exists a constant λ such that

$$
|u(x, t)| \leq \frac{\lambda}{t}
$$

for $x \in \mathbb{R}^{3}$ and $t>0$.
5. Give an example of a continuous function on $[0,1]$ which has classical derivative defined almost everywhere, but which is not weakly differentiable.

