Problems for Preliminary Exam
 Applied Mathematics

August 2017

Part I
 All problems have 10 points.

1. How many derivatives does the solution to the following equation have in a neighborhood of the origin:

$$
y^{\prime}=x+y^{\frac{7}{3}} ?
$$

2. For which a each solution can be extended to the interval $-\infty<x<\infty$ for the equation

$$
y^{\prime}=\left(y^{2}+e^{x}\right)^{a} ?
$$

3. Solve

$$
y^{\prime \prime}+2 y^{\prime}+y=\cos i x .
$$

Here i is the imaginary unit, $i^{2}=-1$.
4. For which values of the real parameter a the equilibrium $x_{1}=x_{2}=$ $x_{3}=0$ of the system

$$
\begin{aligned}
& \dot{x}_{1}=a x_{1}-x_{2}, \\
& \dot{x}_{2}=a x_{2}-x_{3}, \\
& \dot{x}_{3}=a x_{3}-x_{1},
\end{aligned}
$$

is stable?
5. Find Green's function for

$$
y^{\prime \prime} \cos ^{2} x-y^{\prime} \sin 2 x=f(x), \quad y(0)=y^{\prime}(0), \quad y(\pi / 4)+y^{\prime}(\pi / 4)=0 .
$$

Part II

All problems have 10 points.

1. Does there exist a function u harmonic in the ball $B=\left\{x \in R^{3}\right.$: $\|x\| \leq 1\}$ such that $u(x) \geq 0$ for all $x \in B, u(0,0,0)=1$ and $u\left(0,0, \frac{1}{2}\right)=10$?
2. Let u be a solution of the heat equation

$$
u_{t}=\Delta u
$$

in $R^{3} \times(0,1)$ such that $u(x, t) \geq 0$ for all $(x, t) \in R^{3} \times[0,1]$ and $u(x, t)=0$ in the cube $[0,1] \times[0,1] \times[0,1] \times[0,1]$. Is it true that $u(x, t)$ has to be zero function in $R^{3} \times[0,1]$?
3. Let u be a solution of the following Cauchy problem in $R \times R_{+}$:

$$
u_{t}=u_{x x}, \quad u(x, 0)=\frac{x^{4}+\cos x}{2+3 x^{4}} .
$$

Find $\lim _{t \rightarrow \infty} u(x, t)$.
4. Assume u is a solution of the following Cauchy problem in $R^{3} \times R_{+}$:

$$
u_{t t}=\Delta u, \quad u(x, 0)=0,\left.\quad u_{t}(x, t)\right|_{t=0}=\psi(x)
$$

where $\psi(x)=0$ if $\|x\| \in[0.9,1.0]$, and $\psi(x)>0$ for all other x. Find all points $(x, t) \in R^{3} \times R_{+}$such that $u(x, t)=0$.
5. Solve the following Cauchy problem in $R_{+} \times R$:

$$
\frac{\partial u}{\partial x_{1}}+\left(u+x_{2}\right) \frac{\partial u}{\partial x_{2}}+u=0, \quad u\left(0, x_{2}\right)=x_{2} .
$$

