Instructions. Answer any 4 short questions, and any 4 long questions. Clearly mark which questions you wish to be graded on this sheet, or else 1-4 and 6-9 will be graded. Show all work, and explain your answers clearly. Solutions will be graded on correctness and clarity. All answers should include some explanation.

Shorter questions: (5 points each)

1. How many monomials of degree 7 are there in the variables $x_{1}, x_{2}, x_{3}, x_{4}$, and x_{5} ?
2. How many multisets are contained within the multiset $\{A, A, A, B, B, C, D, E, F\}$?
3. How many distinct permutations are there on [10] that have exactly two cycles when written in cycle notation?
4. How many ways can 6 days be picked from January (which has 31 days) so that no two picked days are consecutive?
5. Label the vertices of a hexagon with 1 through 6 . How many ways can the hexagon be triangulated? Your answer should be a single number.

Longer questions: (10 points each)
6. How many lattice paths from $(0,0)$ to (n, n) stay weakly above the line $y=x-1$? Derive your answer from scratch.
7. Give a combinatorial proof of the following identity:

$$
\binom{n+3}{5}=\sum_{k=2}^{n}\binom{k}{2}\binom{n+2-k}{2}
$$

8. Consider a set S of objects, and a list of properties $c_{1}, c_{2}, \ldots, c_{t}$.

- Let $S_{1}=\sum_{i} N\left(c_{i}\right), S_{2}=\sum_{1 \leq i<j \leq t} N\left(c_{i} c_{j}\right)$, and so on (where $N\left(c_{2} c_{3}\right)$ is the number of elements in S satisfying c_{2} and c_{3}, for example).
- Let E_{m} be the number of elements in S that satisfy exactly m of the properties in S.

Prove the following identity holds for each m between 1 and t :

$$
E_{m}=\sum_{j=m}^{t}(-1)^{j-m}\binom{j}{m} S_{j}
$$

The following identity may be useful: $\binom{j}{m}\binom{\ell}{j}=\binom{\ell}{m}\binom{\ell-m}{j-m}$.
9. Use generating functions to prove that the number of partitions of n into distinct parts is equal to the number of partitions of n into odd parts. In your proof, it should be clear how your generating functions were derived.
10. How many partitions have a Young diagram that fits into a 6×6 square and a first part that is at least 5 ?

