# NDSU Mathematics Department 

GEOMETRY and TOPOLOGY QUALIFYING EXAMINATION,
May 15th, 2018
Unless otherwise stated, "manifold" refers to a manifold without boundary.

## Section A - Differential Topology:

1. a. Give an example of a homeomorphism $f: \mathbb{R} \rightarrow \mathbb{R}$ which is not a diffeomorphism.
b. Prove or disprove: Let $F: M \rightarrow N$ be a smooth map between smooth manifolds $M$ and $N$ and let $c \in N$ be a critical value of $F$. Then $F^{-1}(c)$ is not an embedded submanifold of $M$.
2. Suppose $(x, y)$ are Cartesian coordinates on $\mathbb{R}^{2}$ and $(u, v)$ are new coordinates defined by

$$
u=5 x+y-3 \text { and } v=-x+y+5 .
$$

Express the vector field $x \frac{\partial}{\partial x}$ as a vector field $P(u, v) \frac{\partial}{\partial u}+Q(u, v) \frac{\partial}{\partial v}$.
3. Let $M=\mathbb{R}^{3} \backslash S^{2}$. For which values of $k$ does there exist a smooth $k$-form $\omega$ on $M$ such that $d \omega=0$, but $\omega \neq d \tau$ for any $(k-1)$ form.
4. Let $M^{m}$ be a compact smooth manifold and $E \rightarrow M$ a vector bundle of rank $k$. Prove the following:
a. If $k>m$, then $E$ admits a nowhere vanishing section.
b. If $k \leq m$, then $E$ admits a section $\sigma$ such that the set of points where $\sigma$ vanishes is a smooth compact codimension $k$ submanifold of $M$.
5. Let $M$ be a smooth manifold of dimension $m<n$. Let $f$ be a smooth map $f: M \rightarrow S^{n}$. Prove that $f$ is smoothly homotopic to a constant map.

## Section B - Algebraic Topology:

1. a. Let $X$ be a Hausdorff topological space. Show that there exists a compact topological space $Y$ such that $X$ is a subspace of $Y$ and $Y \backslash X$ consists of a single point.
b. For distinct positive integers $m$ and $n$, prove that $\mathbb{R}^{m}$ is not homeomorphic to $\mathbb{R}^{n}$.
2. A topological space is said to have the fixed-point property if all continuous maps $f: X \rightarrow X$ fix a point.
a. Show that $\mathbb{S}^{n}$ does not have the fixed-point property for all $n \geq 0$.
b. Prove that $\mathbb{R} P^{2}$ has the fixed-point property.
c. Which compact orientable 2-manifolds have the fixed-point property?
3. Let $m, n$ be positive integers. Find homology groups of
a. $\mathbb{S}^{m} \times \mathbb{S}^{n}$
b. $\mathbb{S}^{m} \vee \mathbb{S}^{n}$
4. Show that for all $k \geq 3$ the free group $\mathbb{F}_{k}$ is isomorphic to a subgroup of $\mathbb{F}_{2}$.

HINT: Use covering spaces.
5. a. Find $\chi\left(\mathbb{T}^{n}\right)$.
b. Let $X, Y$ be finite CW-complexes. If $\chi(X)=\chi(Y)=0$ is it true that $\chi(X \times Y)=0$ ?

