NDSU Mathematics Department

GEOMETRY and TOPOLOGY QUALIFYING EXAMINATION, May 15th, 2018

Unless otherwise stated, "manifold" refers to a manifold without boundary.

Section A - Differential Topology:

- 1. a. Give an example of a homeomorphism $f : \mathbb{R} \to \mathbb{R}$ which is not a diffeomorphism.
 - b. Prove or disprove: Let $F: M \to N$ be a smooth map between smooth manifolds M and N and let $c \in N$ be a critical value of F. Then $F^{-1}(c)$ is not an embedded submanifold of M.
- 2. Suppose (x, y) are Cartesian coordinates on \mathbb{R}^2 and (u, v) are new coordinates defined by

u = 5x + y - 3 and v = -x + y + 5.

Express the vector field $x \frac{\partial}{\partial x}$ as a vector field $P(u, v) \frac{\partial}{\partial u} + Q(u, v) \frac{\partial}{\partial v}$.

- 3. Let $M = \mathbb{R}^3 \setminus S^2$. For which values of k does there exist a smooth k-form ω on M such that $d\omega = 0$, but $\omega \neq d\tau$ for any (k 1)-form.
- 4. Let M^m be a compact smooth manifold and $E \to M$ a vector bundle of rank k. Prove the following:
 - a. If k > m, then E admits a nowhere vanishing section.
 - b. If $k \leq m$, then E admits a section σ such that the set of points where σ vanishes is a smooth compact codimension k submanifold of M.
- 5. Let M be a smooth manifold of dimension m < n. Let f be a smooth map $f: M \to S^n$. Prove that f is smoothly homotopic to a constant map.

Section B - Algebraic Topology:

- 1. a. Let X be a Hausdorff topological space. Show that there exists a compact topological space Y such that X is a subspace of Y and $Y \setminus X$ consists of a single point.
 - b. For distinct positive integers m and n, prove that \mathbb{R}^m is not homeomorphic to \mathbb{R}^n .

- 2. A topological space is said to have the fixed-point property if all continuous maps $f: X \to X$ fix a point.
 - a. Show that \mathbb{S}^n does not have the fixed-point property for all $n\geq 0.$
 - b. Prove that $\mathbb{R}P^2$ has the fixed-point property.
 - c. Which compact orientable 2-manifolds have the fixed-point property?
- 3. Let m, n be positive integers. Find homology groups of a. $\mathbb{S}^m \times \mathbb{S}^n$
 - b. $\mathbb{S}^m \vee \mathbb{S}^n$
- 4. Show that for all $k \geq 3$ the free group \mathbb{F}_k is isomorphic to a subgroup of \mathbb{F}_2 .

HINT: Use covering spaces.

- 5. a. Find $\chi(\mathbb{T}^n)$.
 - b. Let X, Y be finite CW-complexes. If $\chi(X) = \chi(Y) = 0$ is it true that $\chi(X \times Y) = 0$?

 $\mathbf{2}$