NDSU Mathematics Department
 GEOMETRY and TOPOLOGY QUALIFYING EXAMINATION
 August 16, 2018

Please write all answers using a blue pen. Only write on one side of the paper. Clearly cross-out any work which you do NOT want us to grade.

Unless otherwise stated, "manifold" refers to a manifold without boundary.

Part A:

(1) Find a topological space which is path connected but not locally path connected.
(2) Let M be a connected manifold, and p, q be points of M. Prove that there exists a homeomorphism $f: M \rightarrow M$ such that $f(p)=q$.
(3) Let X and Y be finite CW complexes such that X covers Y. Prove that $\chi(X)$ is an integer multiple of $\chi(Y)$.
(4) Let n be a positive integer.
(a) Determine the homology groups of $\mathbb{C} P^{n}$.
(b) Dtermine $\pi_{1}\left(\mathbb{C} P^{n}\right)$.
(c) Use the Mayer-Vietoris sequence and induction to compute the de Rham cohomology groups of $\mathbb{C} P^{n}$.
(5) A topological space X is obtained by identifying all four vertices of a tetrahedron. Determine the homology groups of X.

Part B:

(1) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=x^{3}+x y+y^{3}$.
(a) Show that $f^{-1}(1)$ is a smooth submanifold of \mathbb{R}^{2}.
(b) Show that $f^{-1}(0)$ is not a smooth submanifold.(Hint: If $(x(t), y(t))$ is a curve in $f^{-1}(0)$ with $x(0)=y(0)=0$, then what is the condition on $x^{\prime}(0)$ and $y^{\prime}(0)$?)
(2) Let M be a compact, connected and orientable smooth manifold of dimension 6 . Let α and β be two-forms on M. Show that there is a point of M where $d \alpha \wedge d \beta=0$.
(3) Let $M(n)$ denote the space of $n \times n$ matrices with real entries. Prove that the orthogonal group

$$
O(n)=\left\{A \in M(n) \mid A A^{t}=I d_{n}\right\}
$$

is a manifold of dimension $n(n-1) / 2$.
(4) Define a 1 -form on $\mathbb{R}^{2} \backslash\{0\}$ by

$$
\omega=-\left(\frac{y}{x^{2}+y^{2}}\right) d x+\left(\frac{x}{x^{2}+y^{2}}\right) d y .
$$

Calculate $\int_{C} \omega$ for any simple closed curve containing the origin.
(5) For a plane $P \subset \mathbb{R}^{3}$, let $\pi_{P}: \mathbb{R}^{3} \rightarrow P$ denote the orthogonal projection onto P. Suppose that $g: S^{1} \rightarrow \mathbb{R}^{3}$ is a smooth embedding. Prove that there exists a plane P for which $\pi_{P} \circ g$ is an immersion.

