NDSU Mathematics Department

GEOMETRY and TOPOLOGY QUALIFYING EXAMINATION May 15, 2019

Please write all answers using a blue pen. Only write on one side of the paper. Clearly cross-out any work which you do NOT want us to grade. Unless otherwise stated, "manifold" refers to a manifold without boundary.

Part A

- A1 (1) Give an example of a topological space which is path connected but not locally path connected.
 - (2) Give an example of a topological space which is locally path connected but not locally simply connected.
- A2 A topological space X is obtained as a quotient of the union of a hexagon $aba^{-1}cbc$ and an octagon $c^2aba^{-1}b^3$ by gluing all the corresponding sides. Compute the homology groups of X.
- A3 Find the fundamental group of
 (1) SL(2, ℝ)
 (2) SO(3, ℝ)
 - (Hint: Show that $SO(3, \mathbb{R})$ is homeomorphic to $\mathbb{R}P^3$.)
- A4 (1) For every integer n, find a map $f: S^2 \to S^2$ of degree n. (2) For every integer n, find a map $f: \mathbb{C}P^2 \to \mathbb{C}P^2$ of degree n^2 .
- **A5** Let $g, h \ge 0$. Describe all pairs (g, h) such that Σ_g covers Σ_h .

Part B

- **B1** Consider the following statement: If ω is a smooth k-form on a smooth manifold M^n , then $\omega \wedge \omega = 0$. Discuss this statement.
- **B2** Show that the subset of \mathbb{R}^3 defined by the equation

$$(1-z^2)(x^2+y^2) = 1$$

is a smooth manifold.

B3 Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$F(x,y) = (x + y^2, x^2).$$

Denoting by u, v the Cartesian coordinates of the target space, determine

$$F^*(v \, du + dv).$$

 $\mathbf{B4}$ Let

- $M = \{ ([x_0 : x_1 : x_2], t) \in \mathbb{R}P^2 \times \mathbb{R} \mid x_0 + x_1 t + x_2 t^2 = 0 \}.$
- (1) Show that M is an embedded submanifold of $\mathbb{R}P^2 \times \mathbb{R}$. (2) Let $\pi : M \to \mathbb{R}P^2$ be projection onto the first factor. Find the regular values of π .
- **B5** Let M be the smooth 3-manifold obtained by identifying $\{0\} \times S^2$ and $\{1\} \times S^2$ in $[0,1] \times S^2$ via the map $(0,x) \mapsto (1,-x)$ for any $x \in S^2$. Compute the de Rham cohomology groups of M.