NDSU Mathematics Department

GEOMETRY and TOPOLOGY QUALIFYING EXAMINATION
August 21, 2019

- Please write all answers using a blue pen. Only write on one side of the paper. Clearly cross-out any work which you do NOT want us to grade.
- Unless otherwise stated, "manifold" refers to a manifold without boundary.

Part A

A1 Let X be a quotient space of the Klein bottle obtained by identifying two distinct points. Compute the fundamental group and all the homology groups of X.

A2 Let \mathbb{Z}_{6} act on $S^{3}=\left\{(z, w) \in \mathbb{C}^{2},|z|^{2}+|w|^{2}=1\right\}$ via $(z, w) \mapsto$ $(\zeta z, \zeta w)$ where ζ is a sixth root of unity. Denote by L the quotient S^{3} / \mathbb{Z}_{6}.
(1) What is the fundamental group of L ?
(2) Describe all coverings of L.
(3) Show that any continuous map $L \rightarrow S^{1}$ is nullhomotopic.

A3 Let D^{3} be the 3 -dimensional closed unit ball. Let $F: D^{3} \rightarrow D^{3}$ be a continuous map. Show that f has a fixed point.

A4 Let X and Y be topological spaces and $f: X \rightarrow Y$ a map which is continuous and bijective.
(1) Give an example showing that f need not be a homeomorphism. Be sure to prove that the map in your example is continuous and not a homeomorphism.
(2) Prove that f must be a homeomorphism under the additional assumptions that X is compact and Y is Hausdorff.

A5 Let $S^{n}, n \geq 1$, be the unit sphere in \mathbb{R}^{n+1} given by $\|x\|=1$. Suppose that $f: S^{n} \rightarrow S^{n}$ is a smooth map such that the position vector of $x \in S^{n}$ and the position vector of $f(x) \in S^{n}$ are perpendicular to each other for all $x \in S^{n}$.
(1) Prove that f is homotopic to the identity map of S^{n}
(2) Show that such an f exists if and only if n is odd.

Part B

B1 Let M be a nonempty topological n-manifold without boundary with $n \geq 1$. If M has a smooth structure, show that M has uncountably many smooth structures

B2 Let $\Psi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $\Psi(x, y)=x^{2}-y^{2}$.
(1) Show that $\Psi^{-1}(0)$ is not an embedded submanifold of \mathbb{R}^{2}.
(2) Can $\Psi^{-1}(0)$ be given a topology and smooth structure making it into an immersed submanifold of \mathbb{R}^{2} ?

B3 Let M be the smooth submanifold of \mathbb{R}^{3} defined by

$$
\left(1-z^{2}\right)\left(x^{2}+y^{2}\right)=1 .
$$

(1) Define a vectorfield on \mathbb{R}^{3} by

$$
V=z^{2} x \frac{\partial}{\partial x}+z^{2} y \frac{\partial}{\partial y}+z\left(1-z^{2}\right) \frac{\partial}{\partial z}
$$

Show that the restriction of V to M is a tangent vector field to M.
(2) Show that the family of maps

$$
\phi_{t}(x, y, z)=(x \cos t-y \sin t, x \sin t+y \cos t, z)
$$

restricts to a one-parameter family of diffeomorphisms of M. For each t, determine the vector field $d \phi_{t}(V)$ on M.

B4 Let $Z \subset \mathbb{R}^{2}$ be the unit circle and consider the map $f: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow$ \mathbb{R}^{2} given by

$$
f(x, y)=\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right) .
$$

(1) Show that f is not transverse to Z.
(2) Find a smooth homotopy $F:[0,1] \times \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}^{2}$ such that $F(0, x)=f(x)$ and $F(1, x)$ is transverse to Z. Justify your claim.

B5 Let X be a compact connected orientable n-manifold without boundary and let $\omega \in \Omega^{n-1}(X)$. Prove that $d \omega$ must vanish at some point of X.

