NDSU
 Geometry/Topology Preliminary Examination

18 August 2016

Instructions

Please attempt all questions. Show your work.
Unless stated otherwise, all topologies and smooth structures are the standard ones.

Grading

Question:	1	2	3	4	5	6	7	8	9	10	Total
Points:	10	10	10	10	10	10	10	10	10	10	100
Score:											

Questions

1. (10 points) Let $f: M \rightarrow N$ be a smooth map between smooth manifolds M and N.
(a) Define what it means for f to be: (i) an immersion; (ii) a submersion; and (iii) an embedding.
(b) Show that if M is compact and f is an injective immersion, then f is an embedding.
2. (10 points) Calculate the de Rham cohomology ring of $\left(S^{1} \times S^{3}\right) \# \mathbb{C} P^{2}$.
3. (10 points) Let M be a smooth manifold of dimension $2 n$. We say that a 2 -form $\omega \in \Omega^{2}(M)$ on M is symplectic if $d \omega=0$ and $\underbrace{\omega \wedge \cdots \wedge \omega}_{n \text { times }}$ is a nowhere vanishing $2 n$-form on M.
(a) Let $\mathbb{R}^{2 n}=\left\{\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \mid x_{i}, y_{i} \in \mathbb{R}\right.$ for all $\left.i\right\}$. Show explicitly that

$$
\omega=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}
$$

is an exact symplectic form on $M=\mathbb{R}^{2 n}$.
(b) Show that if M is compact with no boundary then no symplectic form ω on M is exact.
4. (10 points) Let $M=\mathbb{R}^{2} / \mathbb{Z}^{2}$ be the two dimensional torus. Let $\pi: \mathbb{R}^{2} \rightarrow M$ be the quotient map.
(a) Let $l=\mathbb{R} \cdot(7,3)$ be a line in \mathbb{R}^{2} and let $S=\pi(l) \subset M$. Show that S is a compact embedded submanifold of M.
(b) Find a closed differential 1-form α on M such that

$$
\int_{S} \alpha=1 .
$$

(c) Give an example of a line l in \mathbb{R}^{2} such that $\pi(l)$ is NOT a compact embedded submanifold of M. Briefly justify your answer, no explicit proof is needed.
5. (10 points) Let M be a compact smooth n-manifold and $f: M \rightarrow \mathbb{R}^{n+1}$ smooth with $0 \notin f(M)$. Show that there exists a line $l \subset \mathbb{R}^{n+1}$ through the origin that meets $f(M)$ in finitely many points.
6. (10 points) Let $A, B \subset \mathbb{R}$ be closed, non-empty, disjoint sets. Prove that there exists a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \mid A \equiv 1$ and $f \mid B \equiv-1$.
7. (10 points) Let $C \subset[0,1]$ be the Cantor middle-third subset. Let $A \subset C$ be a connected component. Prove that A is a singleton.
8. (10 points) Let S^{n} be the n-dimensional sphere. Prove that if a continuous map $f: S^{n} \rightarrow S^{n}$ factors into continuous maps

then f is null-homotopic.
9. (10 points) Let G be the group generated by α, β, γ subject to the relations

$$
[\alpha, \beta]=\gamma, \quad[\beta, \gamma]=[\gamma, \alpha]=1
$$

Construct a compact, connected Hausdorff space X such that $\pi_{1}(X)=G$. [Be sure to prove that $\pi_{1}(X)$ is isomorphic to G.
10. (10 points) Let $X=\left\{(x, y)\left|x, y \in \mathbb{R}^{3},|x|=1, x \perp y\right\}\right.$. Prove that X is homotopy equivalent to S^{2}.

