NDSU Geometry/Topology Preliminary Examination

18 August 2016

Instructions

Please attempt all questions. Show your work. Unless stated otherwise, all topologies and smooth structures are the standard ones.

Grading

Question:	1	2	3	4	5	6	7	8	9	10	Total
Points:	10	10	10	10	10	10	10	10	10	10	100
Score:											

Questions

- 1. (10 points) Let $f: M \to N$ be a smooth map between smooth manifolds M and N.
 - (a) Define what it means for f to be: (i) an immersion; (ii) a submersion; and (iii) an embedding.
 - (b) Show that if M is compact and f is an injective immersion, then f is an embedding.
- 2. (10 points) Calculate the de Rham cohomology ring of $(S^1 \times S^3) # \mathbb{C}P^2$.
- 3. (10 points) Let M be a smooth manifold of dimension 2n. We say that a 2-form $\omega \in \Omega^2(M)$ on M is symplectic if $d\omega = 0$ and $\underline{\omega \wedge \cdots \wedge \omega}$ is a nowhere vanishing 2n-form on M.

(a) Let
$$\mathbb{R}^{2n} = \{(x_1, \dots, x_n, y_1, \dots, y_n) \mid x_i, y_i \in \mathbb{R} \text{ for all } i\}$$
. Show explicitly that

n times

$$\omega = \sum_{i=1}^n dx_i \wedge dy_i$$

is an exact symplectic form on $M = \mathbb{R}^{2n}$.

(b) Show that if M is compact with no boundary then no symplectic form ω on M is exact.

- 4. (10 points) Let $M = \mathbb{R}^2/\mathbb{Z}^2$ be the two dimensional torus. Let $\pi : \mathbb{R}^2 \to M$ be the quotient map.
 - (a) Let $l = \mathbb{R} \cdot (7,3)$ be a line in \mathbb{R}^2 and let $S = \pi(l) \subset M$. Show that S is a compact embedded submanifold of M.
 - (b) Find a closed differential 1-form α on M such that

$$\int_{S} \alpha = 1$$

- (c) Give an example of a line l in \mathbb{R}^2 such that $\pi(l)$ is NOT a compact embedded submanifold of M. Briefly justify your answer, no explicit proof is needed.
- 5. (10 points) Let M be a compact smooth n-manifold and $f: M \to \mathbb{R}^{n+1}$ smooth with $0 \notin f(M)$. Show that there exists a line $l \subset \mathbb{R}^{n+1}$ through the origin that meets f(M) in finitely many points.
- 6. (10 points) Let $A, B \subset \mathbb{R}$ be closed, non-empty, disjoint sets. Prove that there exists a continuous function $f : \mathbb{R} \to \mathbb{R}$ such that $f|A \equiv 1$ and $f|B \equiv -1$.
- 7. (10 points) Let $C \subset [0,1]$ be the Cantor middle-third subset. Let $A \subset C$ be a connected component. Prove that A is a singleton.
- 8. (10 points) Let S^n be the *n*-dimensional sphere. Prove that if a continuous map $f: S^n \to S^n$ factors into continuous maps

then f is null-homotopic.

9. (10 points) Let G be the group generated by α, β, γ subject to the relations

$$[\alpha,\beta] = \gamma, \qquad [\beta,\gamma] = [\gamma,\alpha] = 1.$$

Construct a compact, connected Hausdorff space X such that $\pi_1(X) = G$. [Be sure to prove that $\pi_1(X)$ is isomorphic to G].

10. (10 points) Let $X = \{(x, y) \mid x, y \in \mathbb{R}^3, |x| = 1, x \perp y\}$. Prove that X is homotopy equivalent to S^2 .