Introduction to COMPUTATIONAL PHYSICS

3 credits Bulletin description:

Introduction to computational methods, with applications to planetary motion, numerical integration, chaotic oscillations, percolation, random walks, diffusion limited aggregation, molecular dynamics simulation, Monte Carlo methods, and Fourier transforms. 2 lectures.

Prereq: PHYS 251, MATH 166 and CSCI 160 or ECE 173. Coreq: PHYS 252.

Instructor:	Alexander W South Engine 231-9582 Alexander W	0
	https://www.ndsu.edu/pubweb/ carswagn/index.html	
Meetings: Office Hours: Texts:	12:30-1:50pm Tu & Th, South Engineering 221 :Tuesday/Thursday 1pm-2pm and by arrangement Alexander Wagner Computational Physics lecture notes Optional: Harvey Gould, Jan Tobochnik, Wolfgang Christian An introduction to Computer Simulation Methods Third Edition, Pearson/ Addison Wesley	
Topics:	week 01	Introduction to linux/ programing background/ graphics/ discrete examples/ writing LATFX documents.
	week 02	Discrete dynamics, chaos, fractals
	week 03	Continuous motion: solving Newton's equations, Euler and Verlet algo-
		rithms
	week 04	The $1/r^2$ force law: Planetary dynamics, simulating the solar system, predicting eclipses etc.
	week 05	The Lenard Jones potential: periodic boundary conditions, Molecular Dy- namics (MD). Measuring velocity distribution/pressure.
	week 06	The Monte Carlo algorithm: examining the Lennard Jones particle system again.
	week 07	Using MD to look at hydrodynamics.
	week 08	Lattice gases for hydrodynamics, viscosity, sound and shock waves.
	week 09	Boltzmann analysis of lattice gases
	week 10	Lattice Boltzmann methods
	week 11	Determining students projects
	week 12-14	Discussion of student project issues
	week 15	Finalizing student Project papers and presentations
	There will be a Midterm and a final. Student projects are very flexible and fully	
	dependent on the student's interests. Subjects of past projects include sound waves, turbulent flows, boiling simulations, phase-separation, evaporation, rocket launch	
	simulations, predictions of transits of venus, and many others.	
Grading:	Problems 25%, Midterm 25%, Participation 10%, Projects 40%	
	A:90% - 100%; B:80% - 89%; C:60% - 79%; D:40% - 59%; F:0% - 40%	

- Any students with disabilities who need accommodation in this course are encouraged to speak with the instructor as soon as possible to make appropriate arrangements.
- All work done in this course must be completed in a manner consistent with NDSU University Senate Policy, section 355: Code of Academic Responsibility and Conduct (http://www.ndsu.nodak.edu/policy/355.htm)