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Abstract
Yellareddygari, S. KR., Pasche, J. S., Taylor, R. J., Hua, S., and Gudmestad, N. C. 2016. Beta Regression model for predicting the development of pink

rot in potato tubers during storage. Plant Dis. 100:1118-1124.

Pink rot is an important disease of potato with worldwide distribution. Se-
vere yield and quality losses have been reported at harvest and in posthar-
vest storage. Under conditions favoring disease development, pink rot
severity can continue to increase from the field to storage and from storage
to transit, causing further losses. Prediction of pink rot disease development
in storage has great potential for growers to intervene at an earlier stage of
disease development to minimize economic losses. Pink rot disease is es-
timated as percent rot confined on the interval (0 or 1, corresponding to 0%
as no disease and 100% as maximum disease). In this study, beta regression
is considered over the traditional ordinary least squares regression (linear
regression) for fitting continuous response variables bounded on the unit
interval (0,1). This method is considered a good alternative to data
transformation and analysis by linear regression. The percentages of

incidence of pink rot in tubers at harvest, yield, and days after harvest were
used as study covariates to predict pink rot development from 32 to 78 days
postharvest. Results demonstrate that the interaction between percentage of
pink rot at harvest and yield is a significant predictor (P < 0.0001) of the
beta regression model. A linear regression model was also designed to
compare the results with the proposed beta regression model. Linear pre-
dictors observed in diagnostic plots with linear regression model was found
to not be constant and an adjusted R (0.49) was obtained. The pseudo R?
(0.56) and constant variance for this study suggests that the beta regression
function is adequate for predicting the development of pink rot during stor-
age. The use of the beta prediction model could help growers decide
whether to apply a fungicide to tubers going into storage or to market their
crop before significant storage losses are incurred.

Pink rot is an important soilborne disease of potato (Solanum
tuberosum. L) caused by the oomycete Phytophthora erythroseptica
Pethybr. (Boothroyd 1951; Cairns and Muskett 1933; Carrol and
Sasser 1974; Goss 1949; Lambert and Salas 2001). It is most severe
in crops planted in low-lying soils having poor water drainage and
high moisture retention capacity (Lambert and Salas 2001; Taylor
et al. 2006). Oospores present in the soil or plant debris serve as
the primary inoculum, initial infection usually occurs belowground
on roots, and subsequent infection may be found on stems, stolons,
and tubers of potato (Lambert and Salas 2001; Peters and Sturz
2001). Typically, tuber infection occurs through the infected stolon;
however, P. erythroseptica zoospores can also infect tubers through
eyes and wounds (Johnson et al. 2004; Salas et al. 2003). Pink-rot-
infected tubers are soft and rubbery but the periderm often remains
intact. When infected, internal tuber tissue exposed to air for a few
minutes will display a characteristic pink discoloration (Goss 1949;
Taylor et al. 2004). In advanced cases, the lenticels may become
wet and swollen and exude liquid. The periderm can readily slough
off under these conditions, exposing the infected tissue to bacteria
and other secondary rot organisms. Rot symptoms are most severe
during prolonged wet and warm weather conditions during late crop
development, and further infection is known to occur in storage (Al-
Mughrabi et al. 2007; Salas et al. 2000; Secor and Gudmestad 1999;
Taylor et al. 2004).

Potato production in the United States is affected by pink rot, and
severe losses in yield and quality of tubers at harvest and in posthar-
vest storage have been reported (Blodgett 1945; Gudmestad et al.
2007; Taylor et al. 2011). Proper management of the disease in the
field during the growing season is needed to assure desirable yield
and tuber quality at harvest. In turn, pink rot incidence at harvest will
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have a direct and substantial impact upon disease development in
storage. Because most potato cultivars are susceptible to pink rot
(Peters and Sturz 2001; Salas et al. 2003; Taylor et al. 2008) strategies
implemented to manage the disease in the field typically deal with
cultural practices. These usually focus on conditions and practices
that favor infection and disease progression such as avoiding exces-
sive irrigation, planting in well-drained soils, timing vine kill to in-
sure proper skin set at harvest, and modifying tuber handling
procedures during harvest, transportation, and storage. The latter is
extremely important because wounds offer an excellent infection
court for P. erythroseptica (Salas et al. 2000). In many instances,
implementation of these and other cultural practices can reduce pink
rot incidence; however, fungicide applications are routinely used as
supplemental control measures, particularly in fields with a history
of severe losses due to pink rot.

The phenylamide fungicide mefenoxam (metalaxyl) has been very
effective in controlling diseases caused by Phytophthora spp., and
potato growers have relied upon this chemistry to manage both late
blight and pink rot since it first became available nearly 40 years
ago. Unfortunately, efficacy of mefenoxam has decreased since resis-
tance to the fungicide developed and became pervasive throughout
the North American population of the pathogen (Venkataramana
et al. 2010; Taylor et al. 2002). Although mefenoxam can still be ef-
fective in areas where the P. erythroseptica population is composed
of mefenoxam-sensitive strains (Peters et al. 2003; Taylor et al. 2004;
Torres et al. 1985; Wicks et al. 2000), growers have more recently
begun to rely upon phosphite-based fungicides as a substitute
(Johnson et al. 2004; Taylor et al. 2011).

Infected tubers used as seed material provide a source of contam-
ination to previously pathogen-free soils (Peters and Sturz 2001).
Also, P. erythroseptica inoculum in the soil and in infected tubers
present at harvest may contaminate healthy tubers and facilitate in-
fection through wounds made during harvest and handling opera-
tions (Salas et al. 2000; Taylor et al. 2004), ultimately resulting in
additional infections during storage. Managing pink rot from harvest
to storage and storage to transit is as important as controlling the
pathogen during the potato growing season. In addition, growers
now have the option of applying postharvest phosphite fungicides
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when potato tubers are being placed into storage if they suspect they
are at risk of further pink rot development. These fungicides have
proven to be an extremely effective in controlling pink rot in storage
when applied to tubers as a postharvest, prestorage treatment
(Gachango et al. 2012a; Johnson 2008; Miller et al. 2006; Taylor
et al. 2011). Growers are keenly aware that the occurrence of pink-
rot-infected tubers at harvest is a strong indicator that rot will poten-
tially develop and spread during storage. Discarding infected tubers
prior to storage and managing storage conditions such as ventilation,
temperature, and relative humidity are methods frequently imple-
mented to mitigate losses in storage (Gachango et al. 2012b;
Knowles and Plissey 2008). A statistical prediction of pink rot from
harvest to postharvest storage based upon the level of disease ob-
served at harvest would assist growers in deciding whether additional
chemical applications are warranted, whether to expedite their mar-
keting timeline, and whether additional storage management prac-
tices should be implemented.

Plant pathology research often encounters data (continuous re-
sponse variables) bounded on the interval (0,1). Researchers use re-
gression models to assess the response-covariate relationship and a
Gaussian linear regression model is most preferred (Ferrari and
Cribari-Neto 2004). These models are often based on the normal dis-
tribution of error assumption and, for percentage data, researchers
often transform the response variable before a linear regression struc-
ture is fitted to the transformed data. Although transformation fol-
lowed by regression is a common practice among analysts, there
are newer general modeling approaches that may be more appropri-
ate for analyzing these types of data (Schmid et al. 2013; Warton and
Hui 2011). Regular linear regression models can be inadequate for
situations where continuous response variables such as percentages,
proportions, concentrations, and fraction values are restricted to the
interval (0,1) (Bayes et al. 2012; Ferrari and Cribari-Neto 2004;
Kieschnick and McCullough 2003). Linear regression models as-
suming a normal distribution have computational flexibility but
can result in misleading conclusions for data restricted to a scale of
0 or 1 (Galvis et al. 2014). Additionally, linear regression models
yield fitted values for confined percentage data (0,1) exceeding the
confined domain and fail to account for asymmetries between vari-
ables (Bonat et al. 2014; Ferrari and Cribari-Neto 2004).

To overcome this, a beta regression model is proposed to model
bounded (0,1) continuous response variables (Ferrari and Cribari-
Neto 2004). The beta density has a flexible shape representing a va-
riety of distributions for effective modeling of percentage outcomes
confined by lower and upper limits (Bonat et al. 2014; Smithson and
Verkuilen 2006). This model is widely used for analyzing percentage
variables of interest for several applications and is well acknowl-
edged (Bayes et al. 2012; Kelley et al. 2007; Schmid et al. 2013;
Wallis et al. 2009). Despite its adaptability in accounting for hetero-
scedasticity, nonnormality, and skewness of the data, the potential of
beta regression is limited to response variables supported on the in-
terval (0,1) (Galvis et al. 2014).

The first objective of this study was to design a beta regression
function to predict the development of pink rot in storage based on
the incidence of the disease taken at harvest. The second objective
was to provide detailed statistical functions to fit the beta regression
model and discuss the rationale for this type of research.

Materials and Methods

Field plots and soil infestation. This regression study included
raw data from 11 field trials conducted in North Dakota and Minnesota
from 2006 to 2014. Data from multiple locations and two potato cul-
tivars representing diverse crop growing conditions were used for re-
gression analysis. Pink rot field trials were established near Tappen,
ND (one trial), Inkster, ND (one trial), and Park Rapids, MN (nine tri-
als). The pink rot moderately susceptible ‘Ranger Russet’ (Peters and
Sturz 2001) and moderately resistant ‘Russet Burbank’ (Taylor et al.
2008) were planted in these trials. The trials were conducted to test sev-
eral existing and new alternative fungicide chemistries for the control
of pink rot of potato. In each trial, study plots contained a nontreated,
inoculated control treatment. The accumulated data for the control

treatment were fitted to the beta regression model to predict the devel-
opment of pink rot from harvest to storage.

Pink rot field inoculations were performed using a technique modi-
fied from previously described methods (Mulrooney and Gregory
2002; Taylor et al. 2011). Three isolates of P. erythroseptica sensitive
to mefenoxam were grown on V8 media (10%) and incubated at 25°C
in the dark for 4 to 6 weeks until oospores were produced. Culture plates
were mechanically homogenized at the rate of 160 culture plates with 4
liters of water. At planting, the ensuing mixture (culture plate content +
water) was applied in-furrow at the rate of 625 ml of inoculum slurry per
7.6 m of row. Because only the center two rows were infested in a four-
row experimental unit, the inoculum rate was equivalent to approxi-
mately 25 culture plates per 7.6 m of row or one plate per 0.3 m of row.

All trials were planted in a randomized complete block design con-
sisting of four replications per treatment and four rows per experi-
mental unit. Depending on the research objectives and prevailing
weather conditions, planting was initiated during late April to the first
week of June. Seed tubers were planted in each of four rows (7.6 m
long by 0.9 m wide) having a seed spacing of 0.3 m. Standard potato
agronomic practices, typical of the region and crop, were imple-
mented during the growing season. Herbicides and insecticides were
applied as recommended for a commercial potato crop by the grower
cooperator or our research team to manage weed and insect pests dur-
ing each growing season. As needed, an overhead sprinkler irrigation
system was used to irrigate all plots to maintain adequate soil mois-
ture for plant growth during the growing season. Two days prior to
harvest, vines were killed mechanically by means of a rotobeater.

Postharvest disease assessment. Tubers were harvested from two
whole middle rows of each four-row plot and pink rot incidence and
yield were recorded. At harvest, tubers were inspected on the har-
vester for visual symptoms of pink rot. Rotted tubers and tuber pieces
were separated from healthy (symptomless) tubers and weighed. Pink
rot incidence (percent tuber rot), where weight of healthy tubers +
weight of rotten tubers = total yield, was determined as (pink-rot-
infected tuber weight/total yield) x 100 = percent rot at harvest. Rot-
ted tubers were discarded and the remaining healthy-appearing tubers
harvested from only one row of the center two rows of each plot were
transported to North Dakota State University for storage and posthar-
vest evaluation. Tubers were stored in burlap bags in a walk-in cooler
at 12.8°C and 85% relative humidity, conditions simulating those of
commercial storage. Postharvest evaluations for pink rot incidence
were performed after 32 to 78 days in storage, depending on the in-
dividual study year. During the postharvest pink rot evaluation, tuber
samples were removed from the storage and the percentage of healthy
and pink-rot-infected tubers was determined by weight, as previously
described. Overall, 42 observations (2 missing data) from 11 study tri-
als were used to design the beta regression prediction model.

Beta Regression model. In this study, the response variable (pink-
rot-infected tubers calculated as a percentage of total tuber weight) is
a continuous measurement over certain storage durations. A linear re-
gression model is not accurate for such an analysis because the per-
cent postharvest pink rot is analyzed on a scale having confined
endpoint, (0% means no disease and 100% means maximum disease)
and the response variable is measured from the 0 end of the scale to
the 100 end (corresponding to O or 1). To overcome this problem, a
beta regression model, which is a generalized linear model, was in-
troduced (Ferrari and Cribari-Neto 2004). The probability beta den-
sity [y ~ B (p, ¢)] for dependent variable y is defined in its general
form as (Ferrari and Cribari-Neto 2004):

I'(p+q) ,-

fipq) = Wy (1-y)""", 0<y<l,

(eq. 1)
where p and g are unknown parameters controlling the shape of the
distribution, p, ¢ >0, y is a dependent variable, and I'(.) is the gamma
function.

In beta regression, it is common practice to define the two shape
parameters (p, q) of density to that of the mean () and precision pa-
rameter (¢) (Meaney and Moineddin 2014). After reparameterization
to equation 1 in terms of . = p/(p + g) and ¢ = p + ¢, the probability
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beta density of a random variable y with a beta distribution [y ~ B (.,
¢)] can be written as (Ferrari and Cribari-Neto 2004):

f(y;u,@)=myw”(l-y)“_”)“°']7 0<y<l,

(eq. 2)

where 0 < w < 1 and ¢ > 0. From equation 2, the mean and the
variance of the random variable y were defined as E(y) = w and
Var (y) = (1 — w)/(1 + ¢). For the precision parameter (¢) of a fixed
estimate (mean), the higher the ¢ value the smaller the variance of
the variable (Ferrari and Zeileis 2010).

Assuming the percentage response variables were beta distributed,
a beta regression model is designed. Let yy,ys,...,y, be arandom sam-
ple from beta density B (w;, ¢) [y ~ B (;, ¢)], and then the beta re-
gression is defined as (Cepeda-Cuervo 2015):

(eq. 3)

where x;1,...,x;, are the covariates, B¢,B1,...,Bx are the estimated in-
tercept and coefficients corresponding to each covariate, m; is the
linear predictor for the ith observation, and n is the sample size. Here
g(.) is a link function, which connects the linear predictor and the
response variable. The logit link was used in our study [g(n) = log
(u/[1 = w])] for beta regression.

Linear regression model. In this study, the ordinary least squares
regression was applied to compare the results against the proposed
beta regression model. To predict the percentage response variable
from one or more explanatory variables (covariates), a linear regres-
sion model is commonly used. Usually, transformation of percentage
outcome is used and a linear regression model is constructed based
on the transformed response. The most commonly applied is a logit
transformation and is given as:

V= log <L>
I-y

where y* is the transformed value and y is the original response scal-
ing between 0 and 1. The linear regression model of the transformed
value can be written as

(k) =Bo+xaBy+... +xuBy=m;, i=1,...,n

(eq- 4)

yi=Bo+xuP+...+xiBy i=1,...,n (eq. 5)
where y; is the response variable, x;;,...,x;, are covariates,
Bo,B1,---,Bx are estimated intercept and coefficients corresponding

to each covariate, and n is the sample size. The linear regression
model was designed separately using R software. Adjusted R? value
and diagnostic residual plots were calculated to determine the global
goodness of fit for this model.

Statistical analysis. Statistical analysis and construction of the
beta regression model were performed using the betareg package
(Ferrari and Zeileis 2010) and faraway package (Faraway 2014)
for the R software, version 3.1.2. Three independent variables—percent
pink rot at harvest (Xy,qrves), yield in metric tons per hectare (xy;4), and
the number of days after harvest (xpap), were collected along with the
percent pink rot at postharvest (). Considering the interactions between
the variables, six covariates were used to estimate parameters using the
logit link function. Regression parameter estimation was performed by
maximum-likelihood method. The pseudo R? value (squared correla-
tion between logit-link-transformed response and linear combination
of predictor variables) for the beta regression model was included in
the R betareg package. This software package also calculates the
precision parameter (¢) for beta distribution from the variance of the
random variable. The values 0 and 1 were included in the model using
the formula:

y,_yx(n—1)+0.5
n

(eq. 6)

where y is the original value, y’€(0, 1) is the transformed value, and
n is the sample size.

The beta regression model goodness of fit is assessed using differ-
ent types of diagnostic plots, including a Pearson residual plot and
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deviance residual plots. The commonly applied Pearson residual
for beta regression analysis is defined as (Ferrari and Zeileis 2010):

rpi= YT (eq. 7)

Var(y;)
Similarly, the common deviance residual is defined as:

D, =ai\/gi (eq. 8)

where d; is the contribution of the ith observation to the model devi-
ance, a;= 1 ify; >, a;=0if y;=p;, and a; = -1 if y; < [4;.

Results

Beta Regression model. The beta tegression model was designed
to predict disease (dependent variable) that would develop in storage
based on the level of pink rot present at harvest (Fig. 1). Results from
beta regression demonstrate that the interaction between percentage
of tuber rot at harvest and yield is a significant (P < 0.0001) predictor
of the model (Table 1). The beta regression diagnostic plots for de-
viance and Pearson residuals were used to assess the regression as-
sumptions (Fig. 2). The Pearson and deviance residual plots
satisfied the criteria of showing no detectable pattern, which means
that either Pearson or deviance residuals are independent within each
other and the variance was constant (Fig. 2A and B). An estimated
pseudo R? value of 0.56 was obtained, reflecting that the global
goodness-of-fit measured for this equation was adequate. The predic-
tion probability vs. true probability for both regression models was
nearly similar (Fig. 3). The precision parameter (¢) for the beta re-
gression model was calculated as 82.16, indicating that the variance
of the observed data are low. Based on the intercept and covariate es-
timates from the beta regression analysis, a prediction model for an-
alyzing pink rot over time was constructed. The equation in its
general form is written as:

exp(n)
1+exp(7)

where (i) represents the predicted value based on the current data.
The regression model estimates for intercept and six covariates from
the present study were used to determine the linear predictor 7) from
the above equation (Table 1). The 7 value changes depending on the
number of study covariates used for study.

Linear regression model. Results also demonstrated that the in-
teraction between percent pink rot at harvest and yield is a significant
(P <0.0001) predictor (Table 1). The diagnostic residual plot assess-
ing the error term showed that the variance is small around Fitted
value = =2.75; also, Fitted value > —2.75 indicates that variance of
residual is not constant (Fig. 4A). The Q-Q plot indicates that the nor-
mality assumption was valid (Fig. 4B). Adjusted R? value of 0.49 was
obtained for the linear regression model. There is no precision param-
eter (¢) included in normal distribution.

w= (eq. 9)

Discussion

This study provides a regression model for predicting pink rot
from harvest to postharvest storage. Pink rot prediction during stor-
age will assist the grower to make timely decisions between disease
management and marketing. A number of regression analyses have
been designed and fitted for plant pathology research data. To our
knowledge, the studies reported here represent the first use of a beta
regression model to predict the development of a plant disease. In this
study, the beta regression model (betareg R software) was introduced
in plant pathology for estimation of continuous response variables
measured on the unit interval (0,1).

Several factors contribute to pink rot development during storage.
Often, identifying a good predictor is difficult because it may consist
of nonsignificant variables and ignore significant others (Copas
1983). For this analysis, focus was placed on the assumption that
P. erythroseptica causes tuber rot prior to harvest, thereby affecting
tuber yield at harvest, and that postharvest infections occur via
wounds made during harvest operations (Salas et al. 2000; Taylor
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Fig. 1. Box plots for pink rot study parameters observed for tubers harvested across 11 study trials over 2006 to 2014. Dependent variable (postharvest pink rot) is predicted from

independent variables harvest, days after harvest (DAH), and yield; Mt = mefric ton.

Table 1. Test statistics and beta and linear regression parameter estimates®

Beta Regression?

Linear regression®

Coefficients Z test SE Z value P value t Test SE t Value P value
Intercept -5.4239 1.9629 -2.763 0.0057 —5.4419 2.1501 -2.531 0.016

Harvest -2.3365 7.5587 -0.309 0.7572 —1.8268 9.345 -0.195 0.8461
Yield 0.0332 0.0308 1.079 0.2806 0.0321 0.0335 0.961 0.3432
DAH 0.038 0.038 1.001 0.3166 0.0446 0.0414 1.077 0.2888
Harvest x yield 0.0036 0.0008 4.737 <0.0001 0.004 0.001 3.81 <0.0001
Harvest x DAH -0.0007 0.002 -0.349 0.7271 -0.0013 0.0025 -0.523 0.6041
Yield x DAH —-0.0006 0.0006 -0.934 0.3501 -0.0007 0.0007 -1.025 0.3123

2 SE = standard error. Harvest and days after harvest (DAH) represent percent pink rot at harvest and days after harvesting, respectively. The intercept and six
coefficient estimates define the exp(7)) for the beta regression prediction function (). Pseudo R? and adjusted R? represent the fitness good test for their re-
spective regression models. No degree of freedom for Z-test estimates of beta regression, whereas (n — 1) is the degree of freedom for # test estimates of linear
regression.

b Pseudo R? = 0.5611.

¢ Adjusted R? = 0.4934.
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et al. 2004). Field infections of pink rot in the United States range
from 10 to 75% and, in many instances, growers avoid harvesting
the highly infested areas of fields (Blodgett 1945; Boothroyd 1951;
Carrol and Sasser 1974; Salas et al. 2003). However, infected tubers
could be harvested from areas that are not obviously infested or
infested at a very low incidence level. If not completely culled, some
of these tubers will be moved into storage along with healthy tubers.
Furthermore, late-season infections can occur, resulting in symptom-
less tubers, and tubers may become infected during harvesting oper-
ations and handling. Such infections are initiated primarily through
wounds via physical contact between diseased and healthy tubers.
These situations contribute to the likelihood that pink rot will mani-
fest early during the storage period (Salas et al. 2000; Taylor et al.
2004). As rotted tubers decompose, the disease will spread and addi-
tional tubers will be infected and develop pink rot during storage.
If mefenoxam applications are part of a pink rot management reg-
imen, the level of protection provided by this fungicide in the field

would likely be extended to tubers placed into storage as long as
the local P. erythroseptica population remains sensitive to the fungi-
cide and handling procedures do not cause excessive damage to the
tubers as they are harvested and transported. Mefenoxam is not uni-
formly distributed within tuber tissue but is concentrated in biologi-
cally effective quantities at or just beneath the periderm (Barak et al.
1984; Bruin et al. 1982). Therefore skinning, cutting, and other dam-
age to the periderm offers an unprotected, unrestricted entry point,
making such tubers vulnerable to infection (Taylor et al. 2004).
Foliar applications of phosphite fungicides are highly effective in
limiting pink rot tuber infections in the field (Johnson et al. 2004;
Taylor et al. 2011) and as postharvest tuber treatments (Gachango
et al. 2012a; Johnson 2008; Miller et al. 2006; Taylor et al. 2011).
In postharvest inoculation experiments, phosphite applied to intact,
nonwounded tubers prior to storage provided complete protection
from infection by P. erythroseptica zoospores for as long as 187 days
in storage, essentially rendering them immune during this period.
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(Taylor et al. 2004). In these experiments, phosphite protected tubers
from infection by both mefenoxam-sensitive and mefenoxam-
resistant isolates. Similar levels of long-term protection during stor-
age have been reported for tubers artificially wounded and inoculated
as well (Gachango et al. 2012a; Johnson 2008; Miller et al. 2006).

Prior to this study, growers did not have the means to estimate the
level of rot they could expect during storage. The analysis model de-
scribed here provides that tool. It offers a good estimation of rot po-
tential if unprotected tubers are placed into storage, thereby allowing
a grower to make an informed decision regarding postharvest fungi-
cide applications. Treatment with phosphite-based fungicides would
protect such tubers from infection and prevent the spread of the dis-
ease during the storage period. Any rot that ensued would most likely
be directly related to quantity of rotted and symptomless tubers that
were placed into storage, and the difference between the predicted rot
and actual rot observed in storage would be an indicator of the effi-
cacy of the postharvest treatment. Armed with this information, a
grower could potentially adjust strategies to manage late-season in-
fections if the proportion of this “residual rot” is high.

Yield, along with the number of days tubers are in storage, influ-
ence the final pink rot disease incidence outcome. Our study model is
designed to accommodate a postharvest storage duration ranging
from 32 to 78 days. Levels of “wet” storage rots exceeding 5% are
generally considered unstable over the long term and must be mar-
keted expeditiously (Secor and Gudmestad 1999). Use of the model
described here could help growers to make a coordinated effort to
market their crop before significant storage losses are incurred.
The beta regression model is based upon observations of actual pink
rot incidence in the field and, later, in storage. The model could po-
tentially be improved in the future if highly sensitive testing for the
presence of the pathogen, and not strictly observations of disease,
was performed prior to placing tubers into storage. The presence of
P. erythroseptica associated with potato tuber tissue can be detected
at extremely low levels using emerging real-time quantitative polymer-
ase chain reaction (PCR) techniques (Atallah and Stevenson 2006). This
would greatly increase the likelihood of detecting rot potential contrib-
uted by symptomless tubers and tubers carrying the pathogen as a sur-
face contaminant. Incorporation of PCR data into future beta regression
analysis could greatly enhance precision of the model. Studies such as
this may further assist potato growers in making an informed decision to
apply a postharvest phosphite-based fungicide as tubers are being
placed into storage (Miller et al. 2006; Taylor et al. 2011).

For our study, both regression models resulted in similar predic-
tions of postharvest pink rot development. However, the linear re-
gression results may be biased for bounded response variables
(0,1) because the heteroscedasticity is ignored with the model (Ferrari
and Cribari-Neto 2004). Also, the linear regression is applied to the
transformed data and, therefore, the results are interpreted based on
the transformed response, which can potentially disregard the origi-
nal response (Ferrari and Cribari-Neto 2004). It is not possible to di-
rectly compare the two models because the calculated pseudo R* of
beta regression and adjusted R? of linear regression are statistically
not similar. However, the variance pattern of residual in a diagnostic
plot is not constant, indicating that the linear regression assumption
may not be violated. Beta Regression was chosen for our study be-
cause its improved utility for analyzing the continuous percentage
outcomes restricted to the scale (0,1) (Laliberté et al. 2012; Paolino
2001; Smithson and Verkuilen 2006). The beta distribution is flexi-
ble, accommodating left-skewed, right-skewed, and symmetric dis-
tributions of values observed on a unit interval (Kelley et al. 2007).
Unlike linear regression, beta regression retains heteroscedasticity af-
ter the logit transformation because the variance continues to depend
on mean and precision parameters (Saadati and Benner 2014). Also,
the regression results from this model are easy to understand and co-
efficient parameter interpretation is very similar to logistic regres-
sion. Like normal distribution, beta distribution accounts for
simultaneous modeling of the mean and precision through covariates
(Griin et al. 2012). This model is simple to construct and easily acces-
sible by researchers through standard, freely available statistical soft-
ware (betareg for R software and GLIMMIX and FMM for SAS).

The regression model was developed using the currently available
research information to predict the future response or observation
(w). If data are available for the three covariates used in our study,
a grower or researcher can simply insert the appropriate values into
the equation to derive an estimation of the percent development of
pink rot over time (). However, based on the individual research
goals, more predictors influencing the response variable can be added
to improve or adjust the beta regression model. The linear predictor 7
from the response variable function (@) can be used to discover pre-
dictive patterns, if present. For example, the predicted disease pattern
should show an increase in pink rot development from harvest to
storage. The precision parameter (¢) measures the cluster density
of the observed data. The high ¢ value of 82.16 indicates smaller var-
iance for clustered data near the bounds (0,1) (Schmid et al. 2013;
Laliberté et al. 2012). Unlike normal distribution, where variance
is high near the bounds (0,1), the ¢ parameter for beta distribution
controls the variance and models the heteroscedasticity (Laliberté
et al. 2012). For example, if ¢ = 82.16 and mean () for the posthar-
vest pink rot at bounds (0,1) is 0.01 or 0.99 (corresponding to 1 and
99%, respectively), the variance [ (1 — w)/(1 + ¢)] is reduced to
0.0012 (very low). The residual plots (variance is constant) for our
study suggest that the measured factors were important for determin-
ing the beta regression function for predicting percent pink rot during
storage.

We are unaware of any other applications of beta regression in
plant pathology research to estimate continuous responsible variables
bounded on the interval (0,1). Based on the results presented here, we
believe that beta regression has utility in plant pathology research as
an alternative to Gaussian linear regression. This study emphasizes
that the designed prediction model is adequate for analyzing pink
rot over time for potato in selected cultivars grown in North Dakota
and Minnesota. Because the current study used only two potato cul-
tivars, it is possible that the current prediction function may not be
accurate for other potato cultivars, particularly those that may be ei-
ther highly susceptible or highly resistant to infection by P. erythro-
septica. Assessment of the predictive capability of the model with
additional potato cultivars grown and harvested in other production
areas is worth pursuing in future work. Previous studies have demon-
strated that the degree of susceptibility of a potato cultivar to pink rot
affects the level of chemical control that can be achieved (Taylor
et al. 2008). However, this study will help plant pathologists design
their own beta regression models to estimate the bounded (0,1) per-
centage or proportion outcomes with other disease systems. Other
study covariates (if known) can be added to the existing model or
anew model can be developed and tested for pink rot during storage.
This model is not only used to design and develop prediction function
but also is commonly applied to study how different variables influ-
ence the response variable observed on the interval (0,1). We expect
that the beta regression model will be found to be useful and serve as
a basis for future development in applied plant pathology research for
analyzing continuous response variables such as percentages, pro-
portions, concentrations, and fractions confined on interval (0,1).
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