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Abstract— With the increasing availability of high-resolution1

digital elevation model (DEM) data, a need has emerged for2

new processing techniques. Topographic variables, such as slope3

and curvature, are relevant on length scales far larger than4

the pixel resolution of modern DEM datasets. An approach for5

computing slope and curvature is proposed that uses standard6

regression coefficients over large windows while generating out-7

put on the full resolution of the original data, without adding8

substantially to the computation time. In the proposed window-9

aggregation approach, aggregates for fitting a quadratic function10

are computed iteratively from the DEM data in a process that11

scales logarithmically with the window size. It is shown that12

the window-aggregation algorithm produces the results of much13

higher quality than the two-step process of applying neighbor-14

hood operations such as focal statistics followed by small-window15

topographic computations, at comparable computational cost.16

Index Terms— Computational infrastructure and geographic17

information system (GIS), light detection and ranging (LiDAR)18

data, surface and subsurface properties.19

I. INTRODUCTION20

A IRBORNE light detection and ranging (LiDAR)21

technology has resulted in an abundance of22

high-resolution digital elevation models (DEMs) with23

resolutions of 1 m or less [1]. Applications of DEMs include24

understanding surface hydrology [2], [3], [4], [5] and soil25

erosion [6], [7] and performing surface segmentation [8], [9].26

Many topographic variables can be derived from DEMs, with27

slope and curvature among the most important ones [10],28

[11], [12], [13], [14], [15].29

It is assumed throughout this article that the extraction of30

a digital topographic model from LiDAR measurements has31

been completed and a DEM has been constructed. Inference of32

topography from vector data, including the removal of surface33

vegetation and built objects [16], is in itself a challenging topic34

that has recently gained in importance. Artificial intelligence35

approaches are commonly used to improve reconstruction36

quality [17], [18] and model vegetation [19], [20]. The use37
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Fig. 1. Schematic of a large window fit to a noisy DEM.

of curvature and elevation together has been shown to help 38

in terrain reconstruction [21], [22], [23]. The presented work 39

assumes that any such steps have been completed. 40

The history of the development of slope and curvature 41

variables has been dominated by the use of 3 × 3 pixel 42

windows [24], and the corresponding algorithms are most 43

widely available in geographic information systems (GISs), 44

such as ArcGIS [25]. Such window sizes are appropriate 45

when the raster resolution is already on a length scale that is 46

geomorphometrically relevant, i.e., the curvature corresponds 47

to processes that relate to the formation of the landscape. 48

For 1-m DEMs, it is not unlikely that variations between 49

neighboring raster points are due to imperfect processing of the 50

DEM. This type of high-frequency noise is a relatively recent 51

problem, and until the advent of LiDAR, too low resolution 52

of DEMs was a much bigger concern. 53

For high-resolution images, the appropriate window size 54

can be easily 64 × 64 or higher. By default, an algorithm 55

that inspects all raster points in such a window would require 56

accessing more than 4000 elevation values for each output cur- 57

vature value. This requirement creates computational complex- 58

ity issues, even when common regression-based definitions 59

of curvature can be naturally generalized to large windows. 60

Already in 1980, Evans [26] proposed that curvature could be 61

defined based on regression. At the time, he used this definition 62

for driving coefficients over 3 × 3 windows. Wood [27], 63

[28] later proposed a model of curvature that is applicable 64

to larger windows, but the scope was limited to windows 65
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of sizes not much larger than 5 × 5 or 7 × 7. The ability66

to increase window size for working across multiple window67

scales and for reducing the impact of errors in DEMs is well68

documented [29]. However, Wood’s solution would not be69

practical for windows with thousands of data points, and with70

the DEM resolution in the 1990s, there was little motivation71

toward using such large windows.72

Other than performance considerations, there is nothing73

fundamental that limits the use of regression-based curvature74

definitions to small-window sizes. Fig. 1 shows the problem.75

Elevation data are treated as sets of noisy measurements that76

depend on 2-D spatial coordinates. In statistics, quadratic77

functions are fit routinely to large datasets. The curvature prob-78

lem is only special in the sense that this same computation,79

conceptually, is needed for every output raster point in the80

DEM. Performing this computation by iterating over all points81

in each window separately would be prohibitively slow. The82

problem can be made computationally tractable by recogniz-83

ing that polynomial regression requires nothing but additive84

functions, i.e., functions for which all final aggregates can be85

produced by aggregating previous aggregates. This property86

enables a massive reuse of intermediate results between shifted87

windows.88

The contribution of this work is to make computationally89

feasible a window-based regression task that was defined90

by Evans four decades ago, but for which the need for91

applying it to large windows is driven by recent increases92

in the DEM resolution. The regression does not involve an93

approximation per se, but there are some constraints on the94

proposed window-aggregation algorithm that could be viewed95

as approximations. Specifically, windows are expected to be96

square and their size to be a power of 2. The discussion97

is limited to geographical regions small enough that Earth’s98

spherical shape can be ignored and the DEM can be treated99

as defined within a plane in the Euclidean space. Existing100

implementations of regression-based curvature measures are101

only available for windows with a small fixed number raster102

points. The de facto workaround of preprocessing the data103

by using a focal statistics tool for smoothing [25], [30] and104

then applying a small-window definition of curvature is not105

equivalent to the original regression problem and can hence106

be viewed as an approximation. Section IV shows that, in the107

presence of noise, this two-step approach results in a far108

noisier output than regression-based curvature. The latter has109

the added benefit that simple linear regression is arguably110

one of the best-understood tools in statistics. Minár et al. [31]111

highlighted the importance of using well-understood measures112

toward achieving exactness in modeling.113

Another approach for working with high-resolution data is114

to use downsampling for converting it to a scale at which115

3 × 3 windows are useful. Such an approach largely misses116

out on the promise of higher resolution, although it may117

help alleviate accuracy concerns that have been discussed118

extensively [32], [33], [34], [35]. The importance of scale is119

well known in the modeling of topographic data [36], [37],120

[38], [39], and problems related to 3 × 3 windows have been121

discussed extensively [35], [40], [41], [42], [43], [44], [45].122

Mitášová and Hofierka [46] used spline-based interpolation to123

Fig. 2. Process for aggregating sliding windows shown for the first three
8 × 8 windows in DEM: first iteration (top row) produces 2 × 2 subwindows,
second iteration produces 4 × 4 subwindows, and third iteration (bottom row)
produces 8 × 8 subwindows.

achieve an independence of the raster scale, and triangulated 124

irregular networks have been used for computing curvature 125

without being tied to a particular grid [33]. 126

The proposed approach uses a conventional mapping from 127

an input grid of square raster points to an output grid of the 128

same resolution. It also assumes that the Earth’s surface can be 129

considered as a plane within a Euclidean vector space. Earth’s 130

curvature, which is important for low-resolution DEMs [47], 131

[48] and creates significant challenges when integrating data 132

from multiple sources [49], is not the focus of the types of data 133

analysis considered, as can be seen from a simple estimate: 134

At 1-m resolution, a 64 × 64 window, which is the largest 135

considered in this article, only has a spatial extent of 64 m 136

in both dimensions. For conventional Landsat data, with its 137

30-m resolution, even a window as small as 3 × 3 raster points 138

would have a larger spatial extent (90 m in both dimensions). 139

Fig. 2 shows the aggregation process that underlies the 140

window-aggregation algorithm for the first three windows of 141

size 8 × 8. The top row corresponds to the first iteration 142

over the dataset. Aggregation is done over all sliding windows 143

of size 2 × 2. The aggregates represent the middle point 144

in the 2 × 2 window, which is not a raster point in the 145

original raster. This shift by half a pixel is accounted for 146

through adjustments in the metadata. Since the windows in the 147

window-aggregation algorithm all have sizes that are powers 148

of 2, there is no central pixel that is aligned with the original 149

raster for any of the window sizes. All the results are treated 150

as shifted by (w − 1)/2 in both dimensions, and the shift 151

is reflected in the metadata of the file. Processing the result 152

such that the raster matches with the original data requires 153

an additional reraster step. Note also that each image is 154

smaller by w − 1 pixels than the original one, i.e., there is 155

a frame of width (w − 1)/2 around each of the output maps. 156
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In ArcGIS, an estimate of the periphery is returned even when157

only incomplete information is available. For the window-158

aggregation algorithm, it would be straightforward to fill the159

periphery of large-window estimates by small-window ones,160

but it was not done in this work for the sake of clarity. Note161

that peripheral raster points were discarded for the comparison162

algorithm as well. Not doing so would have amounted to an163

unfair comparison since the peripheral points were of much164

lower quality than central points.165

The next iteration is shown in the middle row of Fig. 2.166

In this step, windows of size 4 × 4 are produced from their167

four quadrants. Note that the aggregates are not retrieved168

from adjacent locations, but rather from locations that are169

δ = 2 pixels apart. In general, the aggregation is done on170

windows that are δ = w/2 raster points apart, where w is the171

current window size, which is twice w of the previous iteration172

wcurrent = 2δ = 2 wprevious. Not all of the 2 × 2 aggregates173

that are within the area of the red window are used for174

computing the 8 × 8 aggregates of that window. In fact, none175

of the 2 × 2 aggregates that are useful for the evaluation of176

8 × 8 aggregates of the first (red) window contribute to the177

final aggregate of the second (green) window, as shown in178

Fig. 2. Reuse becomes evident between the first and the third179

window. From the top row, it can be seen that the first and180

third windows share 12 out of the 16 2 × 2 aggregates that181

contribute to the final 8 × 8 window. The final iteration is182

shown in the bottom row. In this iteration, 8 × 8 windows are183

constructed from their constituent 4 × 4 quadrants. For the184

small example, reuse cannot be seen at this level, but away185

from the borders of an image, any aggregate is reused four186

times and itself uses aggregates that were reused four times.187

It is this compounding of reuse that enables the logarithmic188

scaling of the algorithm.189

The doubling of the window size in each iteration means190

that after n aggregation steps, the size of the window is191

w = 2n . Since every aggregation step takes approximately the192

same time, the computation time can be estimated by solving193

for n, with the result being n = log2(w). The scaling of194

the algorithm with regard to w is hence O(log(w)), implying195

that working with windows of size 64 × 64(= 4096) pixels196

takes only twice as long as working with 8 × 8(= 64) pixel197

windows. The default brute-force approach of scanning each198

of the 4096 pixels in the window would take 64 times as long.199

The complexity of the brute-force approach is quadratic in the200

window size (O(w2)), which is prohibitive for large window201

sizes.202

In Section IV-C, it will be seen that, in practice, the203

computational effort is comparable to the combined complex-204

ity of preprocessing and computing curvature over DEMs205

in conventional approaches that produce approximate solu-206

tions of much poorer quality. Meanwhile, the result of the207

window-aggregation algorithm is a standard statistical fit to all208

data with no ad hoc assumptions. Moreover, it is in the nature209

of the algorithm that intermediate aggregates are computed,210

which can be used for multiscalar analysis.211

The iterative aggregation that enables the efficient process-212

ing in this article has been previously used for calculating213

correlations between attributes in multiple raster layers [50].214

In previous work, Denton et al. [51] demonstrated that spatial 215

variables can be aggregated toward slope-related computa- 216

tions, an approach that is generalized to curvature in this work. 217

The potential of using regression-based mean curvature toward 218

prediction tasks was illustrated in [52]. 219

A summary of curvatures and other topographic variables 220

is given by Schmidt et al. [11] and a visual interpretation was 221

done by Florinsky [13]. In GIS, the most important curvatures 222

are ones that are defined with regard to slope. Their practical 223

relevance stems from the force that gravity exerts on flows. 224

In this article, the focus is on profile curvature, which is the 225

curvature in the direction of the slope, based on the definition 226

proposed by Evans [10], and tangential curvature, which is 227

the curvature perpendicular to slope [53]. Concepts of the 228

window-aggregation algorithm could be equally used for the 229

mathematically interesting maximum, minimum, mean, and 230

Gaussian curvatures, but those measures tend to be of less 231

interest in practical applications. 232

Also of interest is the contour curvature or the curvature of 233

the contour lines within a 2-D plane, which is historically 234

called “plan” or “planform curvature.” However, tangential 235

curvature is a closer approximation than contour curvature 236

to the ArcGIS planform curvature, which is consistent with 237

the observation of Schmidt et al. [11] that the Arc/Info user 238

documentation discusses “plan curvature” as implementing the 239

equations for tangential curvature, given in [4] and [54]. Note 240

that the fit function used by Zevenbergen and Thorne [54] 241

includes nine terms instead of Evans’s six terms, which allows 242

it to fit a 3 × 3 window exactly. Zevenbergen and Thorne’s 243

equation includes terms that would be part of third and 244

fourth orders in a Taylor series, and some differences between 245

the presented results and ArcGIS’s are hence expected. The 246

challenges of relating published algorithms with actual imple- 247

mentations in systems is examined in detail by Blaga [12]. 248

Slope and curvature are not the only types of derived 249

attributes that can be computed using iterative aggregation 250

of regression terms (IARTs) over sliding windows. Third- 251

order coefficients could be derived in the same form [55] 252

and some other properties that are commonly considered in 253

geomorphometric analysis [56], such as variance of the local 254

elevation distribution, may also be amenable to such process- 255

ing. Likewise, it would be possible to define window-based 256

slope of slope or slope of aspect measures, as they are 257

discussed by Hu et al. [57]. Evans and Minár [58] introduced 258

a taxonomy of curvature and other geomorphometric variables. 259

While iterative aggregation can be potentially applied to both 260

point- and area-based field variables, it is limited to ones, for 261

which the aggregation can be done in multiple steps, i.e., all 262

relevant aggregates have to be additive. Identification of further 263

additive geomorphometric variables and their computation is 264

left to future work. 265

II. CONCEPTS 266

A. Basics of Window Aggregation 267

In the following, it is assumed that a high-resolution DEM in 268

Universal Transverse Mercator (UTM) Projection is available, 269

which allows considering the data as residing within a metric 270
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grid in the Euclidean space. The elevation z in meters is271

effectively a dataset of samples of a potentially noisy function272

z(x, y), for which easting 0 ≤ x < M and northing 0 ≤ y <273

N are also both given in meters. Notice that elevation datasets274

may apply a scaling factor to the z-value, which is left out of275

the original derivations for simplicity.276

In a brute-force attempt, every possible window of a given277

size of w × w raster points would be extracted out of the278

overall dataset z(x, y) and averaged as follows:279

�
z(w)(x0, y0)

� = 1

w2

�
x,y∈window at(x0,y0)

z(x, y) (1)280

where z is the elevation, x0 and y0 are easting and northing,281

respectively, of the center of the window, and the notation �. . .�282

signifies averaging. This aggregation would be performed over283

each window, one at a time, M−w+1 times in the x-direction284

(easting) and N − w + 1 times in the y-direction (northing).285

The prohibitiveness of this approach for large window sizes,286

which motivates deriving a way of rewriting the window-based287

means over z, will be derived, in which aggregates from prior288

iterations, corresponding to smaller window sizes, are used.289

For simplicity, windows are indexed by their top-left corner,290

i.e., z(w)
i0 j0 holds the aggregate for the window that has i0 and291

j0 as its smallest value of i and j , respectively. The shifting292

by (w − 1)/2 in each direction, which is required to place293

the derived raster image such that the values are at the center294

of the window they represent, is handled at the level of the295

metadata. With that convention, (1) becomes296

�
z
�(w)

i0 j0
= 1

w2

i0+w−1�
i=i0

j0+w−1�
j= j0

zi j . (2)297

Following the motivation in Section I, this sum is rewritten298

in terms of its four constituent quadrants, which are assumed299

to be available from the previous iteration at half the window300

size:301

�
z
�(w)

i0 j0
= 1

w2

i0+w/2−1�
i=i0

j0+w/2−1�
j= j0

zi j302

+ 1

w2

i0+w−1�
i=i0+w/2

j0+w/2−1�
j= j0

zi j303

+ 1

w2

i0+w/2−1�
i=i0

j0+w−1�
j= j0+w/2

zi j304

+ 1

w2

i0+w−1�
i=i0+w/2

j0+w−1�
j= j0+w/2

zi j . (3)305

The rewriting is possible due to the additivity property of306

sums. In other words, for the summation, it is possible to307

compute an overall sum as a sum of partial sums. A recursive308

definition for z(w)
i0 j0 follows by substituting the definition of z(w�)

i j309

for w� = w/2: 310

�
z
�(w)

i0 j0
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

4

�
z
�(w/2)

i0 j0
+ �

z
�(w/2)

(i0+w/2) j0

+1

4

�
z
�(w/2)

i0( j0+w/2)

+1

4

�
z
�(w/2)

(i0+w/2)( j0+w/2)
for w ≥ 2

zi j for w = 1.

(4) 311

Since windows cannot extend beyond image boundaries, the 312

following limits apply: i0 < M −w+ 1 and j0 < N −w+ 1. 313

The number of windows that are returned in each iteration 314

decreases accordingly. Note that, although this recursive def- 315

inition captures concisely how �z� at a particular value of 316

w relate to those at w/2, a recursive implementation would 317

not have the necessary performance. Instead, an iterative 318

implementation is used, which computes averages one level 319

at a time. 320

The derivation so far has been limited to averaging the 321

elevation itself. Slope and curvature measures require com- 322

puting spatial derivatives of elevation, which use aggregates 323

that involve not only elevation but also the spatial coordinates. 324

As such, the aggregation process has to explicitly represent x 325

and y. In addition to �z�, defined in (4), the following will be 326

needed: 327

�
xz

�(w)

i0 j0
= 1

w2

i0+w−1�
i=i0

xi

j0+w−1�
j= j0

zi j 328

�
yz

�(w)

i0 j0
= 1

w2

j0+w−1�
j= j0

y j

i0+w−1�
i=i0

zi j 329

�
x2z

�(w)

i0 j0
= 1

w2

i0+w−1�
i=i0

x2
i

j0+w−1�
j= j0

zi j 330

�
y2z

�(w)

i0 j0
= 1

w2

j0+w−1�
j= j0

y2
j

i0+w−1�
i=i0

zi j 331

�
xyz

�(w)

i0 j0
= 1

w2

i0+w−1�
i=i0

xi

j0+w−1�
j= j0

y j zi j . (5) 332

The derivation of these quantities will be the subject of 333

Section II-D. First, the relationship between the geospatial 334

derivatives and a least-squares fit of a quadratic function 335

over an arbitrary window size will be discussed. Fig. 3 336

shows an overview of the steps in the algorithm and gives 337

a preview of where the equations that will be derived in 338

Sections II-B and II-C are needed. Section III provides more 339

detailed pseudocode of the algorithm (Algorithm 1). 340

B. Geospatial Derivatives From Least-Squares Fitting 341

Following [10] and [28], geospatial derivatives are derived 342

using least-squares fitting. However, unlike past approaches, 343

a recursive window definition is used for the fit, which 344

allows computing the coefficients, and thereby derivatives, 345

for arbitrarily large windows at logarithmic computational 346

cost. Before addressing these computational challenges in 347

Sections II-C and II-D, the relationship between slope and 348
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Fig. 3. Outline of the algorithm.

curvature on the one hand and linear and quadratic derivatives349

of a topographic surface on the other will be examined. The350

notation used in the following goes back to Shary [59] and351

is used in other publications on the topic as well [60]:352

p = ∂z

∂x
, q = ∂z

∂y
353

r = ∂2z

∂x2
, t = ∂2z

∂y2
, s = ∂2z

∂x∂y
. (6)354

With these definitions, any of the linear and355

quadratic topographic functions discussed, for example,356

by Schmidt et al. [11] can be computed. In the following,357

the focus will be on slope, profile (as proposed by Evans [10]),358

and tangential curvature (as proposed by Krcho [53]). The359

equations are given in the following [13], with a factor of360

100 included that helps with discussing output:361

G = arctan
	

p2 + q2
362

kproper_profile = −100
p2r + 2pqs + q2t


p2 + q2
��


1+ p2 + q2
�3

363

kproper_tangential = −100
q2r − 2pqs + p2t


p2 + q2
�	

1+ p2 + q2
364

kcontour = −100
q2r − 2pqs + p2t�


p2 + q2
�3

(7)365

where G is the slope, kproper_profile is the curvature in the366

direction of the line of steepest descent, kprope_tangential is367

the curvature within the plane that is perpendicular to the slope368

vector, and kcontour is the curvature of the contour line in a369

2-D projection of the surface.370

Differences between the curvature definitions are illustrated371

by Florinsky [13]. It can be seen there that contour curvature372

TABLE I

MAPE BETWEEN COMPUTED AND THEORETICAL CURVATURES

remains high even in regions with relatively low slope. Contour 373

lines can have high curvature no matter how flat regions are, 374

which is consistent with the mathematical representation that 375

has an additional factor of (p2 + q2)1/2 in the denominator of 376

the contour curvature, in comparison with tangential curvature, 377

allows it to diverge for small slope. Tangential curvature, 378

in contrast, has a factor of (1+ p2 + q2)1/2, which does not 379

tend to zero for small slope. The latter is somewhat comparable 380

to ArcGIS’s “plan curvature” as noted in [11]. 381

Comparisons showed that none of these three curvatures 382

is exactly what is implemented in ArcGIS. In fact, a simple 383

test can be used to see that ArcGIS does not implement 384

mathematical curvature. The mathematical curvature of a dome 385

that is shaped like a section of a sphere is constant in 386

any direction, i.e., both profile and planform are constant. 387

Implementing the above formulas indeed produces this result. 388

Stretching the dome upward by multiplying every raster point 389

with a constant factor ch > 1 results in an ellipsoid that 390

has higher curvature in the middle than toward the periphery. 391

In contrast, ArcGIS’s curvatures are consistently larger toward 392

the periphery of a spherical dome than the center, as would 393

be expected for second derivatives. Moreover, the ratio of 394

peripheral to central curvature does not change, regardless 395

of the factor by which the dome is stretched upward. The 396

following portions of the above formulas satisfy the second- 397

derivative-like expectation that a constant factor leads to only 398

quantitative but not qualitative changes in curvature, i.e., that 399

kArcGIS(ch ∗ f (x, y)) = ch ∗ kArcGIS( f (x, y)): 400

kprofile = −100
p2r + 2pqs + q2t

p2 + q2
401

ktangential = −100
q2r − 2pqs + p2t

p2 + q2
. (8) 402

Note that the sign of the profile definition is that of 403

the theoretical definition, which is the negative of what 404

is used in ArcGIS. The factors of ((1+ p2 + q2)3)1/2 and 405

(1+ p2 + q2)1/2 from (7) are now absent since they cause the 406

qualitative changes in behavior upon stretching a DEM. The 407

formulas in (8) indeed match the definitions that ArcGIS uses 408

best. This was established by calculating the mean average 409

percentage error (MAPE) for the numerically computed curva- 410

tures using a 3 × 3 window versus the analytical results for the 411

artificial landscape that is discussed in detail in Section IV-A. 412

Table I shows the results of that comparison. Note that 413

the artificial image is intentionally somewhat extreme, with 414

elevation changes of over 350 m within a 500 m × 500 m 415

area. 416
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It can be seen that the MAPE of ArcGIS’s profile is417

clearly smallest with regard to the simplified profile definition418

from (8), in particular 1.35%, and likewise ArcGIS’s planform419

best matches the simplified tangential definition with an error420

of only 1.02%. MAPE values close to or above 100% are421

not considered meaningful since MAPE is not symmetric in422

the values that are being compared. The only other error423

small enough to consider is ArcGIS’s planform in comparison424

with the proper tangential curvature from (7), which has425

an error of 44.6%, consistent with the earlier discussion426

that ArcGIS’s planform is overall more tangential-like than427

contour-like. While implementations of all the above-listed428

curvatures are provided, the definitions in (8) will be used429

for the comparisons since they give the smallest errors for430

ArcGIS.431

The next step is to examine how the quantities p, q, r, s, and432

t can be derived from a least-squares fit of a quadratic function.433

Generalizing the quadratic fit function y(quad)(x) = ax2+bx+c434

to two dimensions gives435

z(quad)(x, y) = 

x y

� a00 a10

a10 a11

�
x
y

�
436

+

b0 b1

� x
y

�
+ c. (9)437

On the other hand, the function z(x, y) can be expanded into a438

Taylor series and written in terms of the abbreviations from (7)439

as follows:440

z(Taylor)
x0,y0

(x, y) = 1

2



x − x0 y − y0

�
441

×

⎛
⎜⎜⎜⎝

∂2z

∂x2

����
x0 y0

∂2z

∂x∂y

����
x0 y0

∂2z

∂x∂y

����
x0 y0

∂2z

∂y2

����
x0 y0

⎞
⎟⎟⎟⎠


x − x0

y − y0

�
442

+


∂z

∂x

����
x0 y0

∂z

∂y

����
x0 y0

�
x − x0

y − y0

�
+ c443

= 1

2



x − x0 y − y0

�
r s
s t

�����
x0 y0


x − x0

y − y0

�
444

+

p q

���
x0 y0


x − x0

y − y0

�
+ c. (10)445

Apart from the factor (1/2) in front of the quadratic term,446

this expansion has the same shape as (9). To avoid additional447

parameters, the notation from (7) will be directly used in448

the least-squares fitting, with a00 = (r/2), a11 = (t/2), and449

a10 = (s/2). This fitting is done for each window, centered on450

(x0, y0). It is assumed that the variables x and y are defined451

within a local coordinate system that has the center of the452

window as its origin.453

C. Mapping Geospatial Derivatives to Window Averages454

With these assumptions, the geospatial derivatives are455

derived by fitting the following function to the data:456

z(window)(x, y) = 1

2



x y

� r s
s t

�
x
y

�
457

+

p q

� x
y

�
+ c. (11)458

Fig. 4. Spatial coordinates within a window of size 4 × 4.

A least-squares fit is performed by minimizing 459�

z(x, y)− z(window)(x, y)

�2
�

460

=
�

z − px − qy − r

2
x2 − sxy − t

2
y2 − c

�2
�

(12) 461

with respect to the six parameters p, q, r, s, t , and c. Toward 462

this goal, the partial derivatives with respect to each of the 463

parameters are set to zero. As a result, six linear equations 464

with six unknowns are obtained. Solving this system in all 465

generality may appear daunting, but fortunately, many of the 466

derivatives are zero. 467

Fig. 4 shows the coordinate system that is used for these 468

aggregations, for the example of a 4 × 4 window. In the 469

following, only square windows of sizes that are powers of two 470

are considered, but aggregates will still be defined and used 471

in such a manner that there is no upper limit to the possible 472

window sizes. The downward direction of the y-axis was 473

chosen for practical reasons and would have to be accounted 474

for in the computation of directional quantities that assume that 475

zero is North or up, those for which the righthandedness of 476

the coordinate system matters. From Fig. 4, it can be seen that 477

the averages �x� and �y� are zero because they are taken over 478

spatial points for which the positive and negative contributions 479

compensate exactly. On a square grid, for each x = xi , there 480

is a point with x = −xi . The term �xy� vanishes for the same 481

reason. More generally, the sample points are chosen such that 482

∀i∃ j (xi = −x j)) and the same for y. 483

Of the terms that do not depend on z, only those are nonzero 484

that have an even number of both x and y instances. All others 485

vanish due to the symmetry. In other words, for the aggregates, 486

which are of the shape �xn ymzk
�
, where 0 ≤ n ≤ 4, 0 ≤ m ≤ 487

4, and 0 ≤ k ≤ 1, the averages with k = 0 vanish if either n 488

or m is odd 489�
xn ym

� ≡ 0 if (nmod 2 = 1) ∨ (mmod 2 = 1). (13) 490

Furthermore, the averages over x and y are independent, and 491

�x2y2
� = �

x2
��

y2�, resulting in the following equations: 492

p
�
x2

� = �
xz

�
493

q
�
y2

� = �
yz

�
494
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r

2

�
x4

�+ t

2

�
x2

��
y2

�+ c
�
x2

� = �
x2z

�
495

s
�
x2

��
y2

� = �
xyz

�
496

r

2

�
x2

��
y2

�+ t

2

�
y4

�+ c
�
x2

� = �
y2z

�
497

r

2

�
x2

�+ t

2

�
y2

�+ c = �
z
�
. (14)498

On a square grid, points are spaced equally in the x- and499

y-directions, hence �x2
� = �

y2� and �x4
� = �

y4�. Since500

these quantities do not depend on z, they can be calculated501

analytically, see the following text. Solving for p, q, r, s, t ,502

and c gives503

p =
�
xz

��
x2

�504

q =
�
yz

��
x2

�505

r = 2

�
x2z

�− �
x2

��
z
�

�
x4

�− �
x2

�2506

s =
�
xyz

�
�
x2

�2507

t = 2

�
y2z

�− �
x2

��
z
�

�
x4

�− �
x2

�2508

c = �
z
�− �

x2
��

x2z
�+ �

y2z
�− 2

�
x2

��
z
�

�
x4

�− �
x2

�2 . (15)509

Aggregates that involve z, i.e., �z�, �xz�, �yz�, �x2z�, �y2z�,510

and �xyz�, have to be computed for each window. The window511

aggregation will be discussed in Section II-D.512

Aggregates that depend only on the spatial coordinates,513

including �x2� and �x4�, remain the same for each window514

and can be computed analytically. For the example window515

with w = 4 in Fig. 4, the averages are computed over516

x = −3/2,−1/2, 1/2, and 3/2, or 2
�2

k=1(k−1/2)2. Each of517

those terms contributes four times for each value of y. In the518

general case of a window of size w, each value of x contributes519

w times to the sum, and the total is normalized by the total520

number of points w2
521

�
x2

� = 1

w2
2w

w
2�

k=1


k − 1

2

�2

. (16)522

This term can be computed using power sums [61]523

n�
k=1

k = 1

2



n2 + n

�
524

n�
k=1

k2 = 1

6



2n3 + 3n2 + n

�
. (17)525

Inserting (17) into (16) gives526

�
x2� = 2

w

⎛
⎝ w

2�
k=1

k2 −
w
2�

k=1

k + w

8

⎞
⎠527

= w2 − 1

12
. (18)528

Fig. 5. Combining quadrants: (Top) two 4 × 4 windows are shown that are
combined to form (Bottom) top two quadrants of an 8 × 8 window.

The fourth-order term 529

�
x4

� = 1

w2
w

w
2�

k=1


k − 1

2

�4

(19) 530

can be calculated similarly, using the additional power sums 531

from [61] 532

n�
k=1

k3 = 1

4



n4 + 2n3 + n2

�
533

n�
k=1

k4 = 1

30



6n5 + 15n4 + 10n3 − n

�
. (20) 534

The result is 535�
x4

� = 3w4 − 10w2 + 7

240
. (21) 536

The frequently occurring term, �x4
�− �

x2
�2

, is 537

�
x4

�− �
x2

�2 = w4 − 5w2 + 4

180
. (22) 538

This term is zero for w = 2, which is consistent with the obser- 539

vation that curvature cannot be calculated over windows of size 540

2 because two data points cannot be used to unambiguously fit 541

a quadratic equation. For w = 4, the term is 1. For w > 4, the 542

term is nontrivial, but since it can be computed algebraically, 543

it does not contribute to the scaling of the algorithm. 544

D. Window Aggregates of Products of Elevation and Location 545

The process of simply adding smaller windows from pre- 546

vious iterations, which was outlined at the beginning of the 547

section, does not work for aggregates that involve spatial coor- 548

dinates because the relative coordinate systems changes. The 549

aggregation involves shifting the coordinate system from being 550
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centered on the windows of size w/2 to being centered on the551

combined window of size w. Fig. 5 specifically shows the552

changes in the x-coordinate of the coordinate system. When553

computing aggregates over 4 × 4 windows, the coordinate554

systems are centered on those windows. In the next iteration,555

which uses 8 × 8 windows, the coordinate system of each556

4 × 4 quadrant has to be shifted accordingly. The same logic557

is applied to the y-coordinate.558

The z-values for the full window are given based on the559

z-values of the constituent quadrants as follows, where the560

notation z00 is used for zi0 j0 , z10 for zi0+w/2, j0 , and so on:561

z(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z00(x0, y0), for x < 0, y < 0

z10(x1, y0), for x > 0, y < 0

z01(x0, y1), for x < 0, y > 0

z11(x1, y1), for x > 0, y > 0

(23)562

where x0 = x + (w/4), x1 = x − (w/4), y0 = y + (w/4), and563

y1 = y − (w/4). Notice that when averages over quadrants564

were computed in the previous iteration, there was only one565

definition of x , and that definition involved a different coordi-566

nate system for each of the windows that are now aggregated.567

In the following, those four coordinate systems have to be568

distinguished such that a systematic coordinate transformation569

can be done into the shared coordinate system of the new570

iteration. Values for each of the coordinates within quadrants571

are within the range −(w/4) < x0, x1, y0, y1 < (w/4).572

For the averaged value of z, the shifting of coordinates does573

not have an impact on the calculation of averages, and the574

averaged value �z00� is simply the sum of the averages that575

were computed in the previous iteration �z�00576

�
z
� = 1

4


�
z00

�+ �
z10

�+ �
z01

�+ �
z11

��
577

= 1

4


�
z
�

00 +
�
z
�

10 +
�
z
�

01 +
�
z
�

11

�
578

= �
z
�� ++
++

�. (24)579

The last line introduces a simplified notation that indicates580

that, for this average, the quadrants are all added. For other581

averages, some quadrants may be subtracted, so a notation is582

used that specifies the sign used in the aggregation of each of583

the quadrants584 �
z
�� ++
++

� = �
z
�⎡

⎣ top-left quadr. top-right quadr.
bottom-left quadr. bottom-right quadr.

⎤
⎦
.585

(25)586

For averages over products of z and x or y, the coordinate587

shifts affect the values of the average because the shifting588

itself contributes an additional term589

�xz� = 1

4

���
x0 − w

4

�
z
�

00
+

��
x1 + w

4

�
z
�

10
590

+
��

x0 − w

4

�
z
�

01
+

��
x1 + w

4

�
z
�

11

�
. (26)591

The goal is, as before, to write the expression as a function592

of the averages that were computed in the previous iteration,593

during which the window size was (w/2). When doing so,594

�x0z01� is replaced with �xz
�

01 and so on because x0 equals595

x of the previous iteration, and the subscript to the average 596

indicates that it is a previous iteration average. Constant 597

factors are also pulled out of the averages, e.g., �(w/4)z
�

01 = 598

(w/4)
�
z
�

01. Averages over sums are broken up into the sums 599

of averages 600�
xz

� = 1

4


�
xz

�
00 +

�
xz

�
10 +

�
xz

�
01 +

�
xz

�
11 601

+w

4


�
z
�

10 +
�
z
�

11 −
�
z
�

00 −
�
z
�

01

��
. (27) 602

Some of the quadrant averages of z now appear with a negative 603

sign. The notation that was introduced in (25) will now be used 604

to keep track of the signs 605�
xz

� = �
xz

�
� ++
++

� + w

4

�
z
�

� −+
−+

�. (28) 606

The linear term �xz
�
[++
++]

is the sum of all four terms linear in 607

x from the previous iteration. The constant term �z� [−+
−+]

is the 608

difference between the averages of the constant terms with 609

positive x (�z�10 and �z�11) and with negative x (�z�00 and 610

�z�01). Equivalent statements hold for �yz�, and the difference 611

is correspondingly taken between values with positive and 612

negative y values 613�
yz

� = 1

4


�
yz

�
00 +

�
yz

�
10 +

�
yz

�
01 +

�
yz

�
11 614

+w

4


�
z
�

01 +
�
z
�

11 −
�
z
�

00 −
�
z
�

10

��
615

= �
yz

�� ++
++

� + w

4

�
z
�� −−
++

�. (29) 616

Averages of terms that are quadratic in the coordinates are 617

evaluated similarly 618

�
x2z

� = 1

4

��
x0 − w

4

�2
z

�
00

+
��

x1 + w

4

�2
z

�
10

619

+
��

x0 − w

4

�2
z

�
01

+
��

x1 + w

4

�2
z

�
11

�
620

= �
x2z

�
� ++
++

� + w

2

�
xz

�
� −+
−+

� + w2

16

�
z
�

� ++
++

� (30) 621

�
y2z

� = �
y2z

�� ++
++

� + w

2

�
yz

�� −−
++

� + w2

16

�
z
�� ++
++

�. (31) 622

Notice that these quadratic terms involve differences between 623

quadrants of linear terms �xz
�
[−+
−+]

, much as the linear terms 624

involved differences between quadrants of constant terms 625

�z� [−+
−+]

. However, these terms do not have to be stored beyond 626

the iteration in which they are used to compute the fit 627

parameters. Only the complete window averages �z�, �xz�, 628

�yz�, �x2z�, �y2z�, and �xyz� are used in the next iteration. 629

The term �xyz� furthermore includes differences of 630

quadrant-level �xz� averages in the y-direction and corre- 631

sponding �yz� differences in the x-direction, as well as a 632

term in which off-diagonal �z� aggregates are subtracted from 633

diagonal ones 634�
xyz

� = 1

4

���
x0 − w

4

��
y0 − w

4

�
z
�

00
635

+
��

x1 + w

4

��
y0 − w

4

�
z
�

10
636

+
��

x0 − w

4

��
y1 + w

4

�
z
�

01
637
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Fig. 6. Schematic showing the cancellation of terms when subtracting
neighboring 8 × 8 pixel windows.

+
��

x1 + w

4

��
y1 + w

4

�
z
�

11

�
638

= �
xyz

�
� ++
++

� + w

4

�
xz

�
� −−
++

�639

+w

4

�
yz

�� −+
−+

� + w2

16

�
z
�� +−
−+

�. (32)640

�xz
�
[−−
++]

can be viewed as the difference between the linear641

dependence of z on x in the quadrants with positive y and the642

quadrants with negative y. �z� [+−
−+]

is a combination of constant643

terms for which the sign is that of the product of the signs of644

x and y. This concludes the derivation of equations that were645

outlined in Fig. 3.646

E. Comparison With Two-Step Process647

It may be tempting to think that computing curvature over a648

smoothed surface alone should itself resolve problems of noise649

adequately. Unfortunately, a two-step process has important650

limitations. Consider the schematic in Fig. 6, which shows651

two 8 × 8 windows that are one raster point apart, with the652

left window shown in yellow and the right one in blue. The653

area that is covered by both windows is shown in green.654

If the values in the yellow window are subtracted from those655

in the blue window, only the narrow yellow and the blue strips656

on the left and right side contribute to the difference. The657

values in the green region cancel and do not contribute to the658

difference at all. This also means that if the data are noisy,659

the averaging over the noise only happens within the narrow660

yellow and blue strips.661

This schematic oversimplifies the difference-taking to662

involve no more than 2 pixels. In the actual two-step approach663

of using smoothing followed by a 3 × 3 window curvature664

computation, there would be two rows of raster points on each665

side contributing. However, the general problem remains that666

points other than those at the periphery cancel and do not667

contribute to the overall curvature computation. The smoothing668

that worked well for the landscape itself is partially undone669

in the curvature computation.670

That problem does not apply to the proposed window-671

aggregation algorithm, which averages gradients over all rele-672

vant points and is equivalent to a standard quadratic fit over the673

window in question. As such, the averaging of errors extends674

to all points in the window. The difference will be visible in the675

evaluation, where it will be seen that the window-aggregation 676

algorithm is less prone to noise than the conventional two-step 677

analysis. 678

F. Analytically Computed Ground Truth 679

For remotely sensed DEM data, there is no “correct” 680

slope or curvature available that could serve as ground truth. 681

A dataset was therefore constructed that allows for an ana- 682

lytical evaluation of curvature measures while offering some 683

diversity in observable features. As such, the model had to be 684

twice differentiable throughout the region, and the formulas 685

for all derivatives had to be encoded in the implementation. 686

This requirement made it highly impractical to use functions 687

that are defined over segments. 688

A common model for a spatial structure that is differentiable 689

arbitrarily many times and can be represented in arbitrarily 690

many dimensions, while being bounded and decreasing toward 691

the edges of any region that contains it, is the Gaussian 692

function e−(x2+y2)/σ 2
. Its convenient properties make it a go-to 693

function in most physical disciplines, including geosciences. 694

However, in this basic form, the model only allows for a very 695

limited set of curvature combinations. However, the convenient 696

properties of the Gaussian function apply even in superpo- 697

sition. In other words, all necessary derivatives could be 698

encoded in a parameterized fashion, and analytical derivatives 699

computed, even when the individual hills themselves may no 700

longer be distinguishable to the observer. 701

The resulting model still has the problem that it does not 702

account for noisy and nondifferentiable scenarios in the real 703

world. When adding a noise model, it had to be established 704

that the analytic derivatives could be expected to continue 705

holding. For this reason, the simplest noise model was used 706

of individually adding random numbers that follow a normal 707

distribution. With this noise model, derivatives are no longer 708

strictly the same as in the noise-free model, but it can be 709

expected that the noise cancels increasingly well for increasing 710

window sizes in any form of window-based smoothing. 711

Notice that the slope and curvature values represent 712

point-based slopes and curvatures, while the proposed algo- 713

rithm returns slopes and curvatures overextended and poten- 714

tially large windows. Differences between both are expected 715

and can indeed be seen in the evaluation. One could consider 716

applying window-based integration to the ground truth, but 717

attempting to do so would raise more questions than it would 718

answer. One question is whether second derivatives or geo- 719

metric curvatures should be integrated. Both definitions would 720

raise concerns, either related to the computation or to the role 721

as ground truth. 722

Instead, window-based slopes and curvatures are viewed as 723

approximates to the point-based slopes and curvatures for the 724

specific context of the artificially generated landscapes. In this 725

viewpoint, the window-based computation serves the purpose 726

of eliminating high-frequency noise, and any change to the 727

slope and curvature determination for the landscape is viewed 728

as error. This “error” increases with increasing window size, 729

as shown in Fig. 14 for a window size of w = 32. What may 730

be most surprising is that, despite this expected difference, and 731
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for large enough noise, increasing window sizes can still result732

in decreasing error. These findings will be discussed in more733

detail in Section IV-A.734

The definition of the artificial landscape is given as follows:735

f (x, y) =
K�

i=0

e
− (x−μi )

2+(y−νi )
2

2σ2
i (33)736

where K is the number of peaks, σi is the width of peak i , and737

μi and νi are the coordinates of the center of peak i . In the738

experiments, the number of peaks, K , was 10, σ varied from739

10% to 30% of the image size, and μ and ν were randomly740

selected within the image.741

The partial derivatives of this function can be taken analyt-742

ically. Since the window size is not taken into consideration,743

it is to be expected that the analytical values would be poor744

approximations when the window size is comparable to σ .745

In the evaluation, the largest window size was 64, and σ was746

chosen to be as small as 10% of the image size of 512, so some747

level of inaccuracy is expected. The partial derivatives of the748

above artificial landscape are given as follows:749

∂ f (x, y)

∂x
= −

K�
i=0

x − μi

σ 2
i

e
− (x−μi )

2+(y−νi )
2

2σ2
i750

∂ f (x, y)

∂y
= −

K�
i=0

y − νi

σ 2
i

e
− (x−μi )

2+(y−νi )
2

2σ2
i751

∂2 f (x, y)

∂x2
=

K�
i=0

(x − μi )
2 − σ 2

i

σ 4
i

e
− (x−μi )

2+(y−νi )
2

2σ2
i752

∂2 f (x, y)

∂y2
=

K�
i=0

(y − νi )
2 − σ 2

i

σ 4
i

e
− (x−μi )

2+(y−νi )
2

2σ2
i753

∂2 f (x, y)

∂x∂y
=

K�
i=0

(x − μi )(y − νi )

σ 4
i

e
− (x−μi )

2+(y−νi )
2

2σ2
i . (34)754

The topographic functions are computed from the deriva-755

tives as given in (7).756

III. IMPLEMENTATION757

A. Array-Based Implementation758

The implementation was done in Python using the759

array-based processing capabilities of NumPy. It is available760

on Github at https://github.com/amdenton/SlidingWindows761

For performing the aggregation, four copies of the arrays762

that hold the raster image, corresponding to each of the763

quadrants, are “flattened”, i.e., treated as a 1-D array. The four764

quadrants are treated as columns in a temporary array. Each of765

the columns represents a shifted version of the aggregate raster.766

Aggregation is then performed in the row direction of the767

temporary array. Aggregates that correspond to points outside768

the frame of (M−w+1) × (N−w+1) meaningful windows769

are deleted.770

Fig. 7 shows the concept. The input raster contains results771

from an aggregation of 2 × 2 windows and is shown on772

the left-hand side. Four copies of the flattened version of773

this raster are shown on the right-hand side, each with a774

different offset. The first one has an offset of 0, corresponding775

Fig. 7. Schematic of the array-based implementation of the raster aggregation
step from w = 2 to w = 4. The example corresponds to an image size of
N = 6 and M = 6, which was reduced to a 5 × 5 raster at w = 2 and is
further reduced to a 3 × 3 output at window size w = 4.

to the top-left raster point. The second has an offset of 776

δ = 2, representing the values from the top-right quadrant. 777

The aggregate value representing the bottom-left quadrant is 778

stored δ = 2 rows below the first raster point. In the flattened 779

raster, this corresponds to a shift of M ∗ δ, where M is the 780

overall width of the DEM. For the tiny example of an image 781

that is only five raster points wide, this shift is 10, and hence, 782

the third copy of the flattened input raster is shown with an 783

offset of 10. The final copy corresponds to the bottom-right 784

quadrant and has a shift of M ∗ δ + δ = 12. 785

It would be straightforward to implement the approach for 786

use on a graphical processing unit (GPU) and easier than 787

implementing multipoint algorithms such as Wu et al. [62] 788

did. From a processing perspective, the proposed algorithm 789

makes heavy use of basic operations on large arrays and can 790

therefore be optimized relatively easily. 791

B. IART Algorithm 792

The pseudocode for the proposed IART algorithm is 793

depicted in Algorithm 1. In addition to the basic structure 794

that was shown in Fig. 3, more detail was added to flesh out 795

steps that were derived in Section II. The algorithm has two 796

main parts. The aggregation step in procedure AGGREGATE 797

progressively aggregates the rasters representing �z�, �xz�, 798

�yz�, �x2z�, �y2z�, and �xyz�, in each step doubling the 799

window size. The procedure CURVATURES uses the aggregates 800

to compute curvatures. 801

The �z� raster is initialized to the original DEM in procedure 802

INITIALIZE. The initialization corresponds to a window size 803

of w = 1. At that window size, all rasters correspond to an 804

average over a single value with x = 0 and y = 0, within 805

the coordinate system that is centered on that value. Hence, 806

all aggregates other than �z� are initialized to 0, implying that 807

the entire representation of spatial coordinates stems from the 808

shift in the coordinate systems upon aggregation of the four 809

quadrants from the previous iteration. In the first aggregation 810

step, which has an output window size of w = 2, the shift 811
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Algorithm 1 Curvature Using Iterative Aggregation
1: procedure INITIALIZE

2: aggs← 0
3: z ← import_dem()
4: xz, yz, xxz, yyz, xyz← zeros(size(z))
5: return aggs, z, xz, yz, xxz, yyz, xyz

6: procedure AGGREGATE(aggs, z, xz, yz, xxz, yyz, xyz)
7: w = 2aggs

8: znew ← add_all(z) � See eqn. (24)
9: xznew← add_all(xz)

10: +w/4 ∗ add_right(z) � See eqn. (28)
11: yznew ← add_all(yz)
12: +w/4 ∗ add_bottom(z) � See eqn. (29)
13: xxznew← add_all(xxz)+w/2 ∗ add_right(xz)
14: +w2/16 ∗ add_all(z) � See eqn. (30)
15: yyznew← add_all(yyz)+w/2 ∗ add_bottom(yz)
16: +w2/16 ∗ add_all(z) � See eqn. (31)
17: xyznew← add_all(xyz)
18: +w/4 ∗ add_bottom(xz)+w/4 ∗ add_right(yz)
19: +w2/16 ∗ add_diag(z) � See eqn. (32)
20: aggs = aggs + 1
21: return aggs, znew, xznew, yznew, xxznew, yyznew, xyznew

22: procedure CURVATURES(aggs, z, xz, yz, xxz, yyz, xyz)
23: w = 2aggs

24: xx = (w2 − 1)/12 � See eqn. (18)
25: xmult = (w4 − 5 ∗ w2 + 4)/180 � See eqn. (22)
26: p = xz/xx
27: q = yz/xx
28: r = 2 ∗ (xxz − (xx ∗ z))/xmult
29: s = xyz/(xx ∗ xx)
30: t = 2 ∗ (yyz − (xx ∗ z))/xmult
31: � For the derivation of p, q, r, s, and t see eqns. (15)
32: slope = arctan(

	
p2 + q2)

33: d0 = (p2 + q2) ∗	
1 ∗ p2 + q2

3

34: profile = −(p2 ∗ r + 2 ∗ p ∗ q ∗ s + q2 ∗ t)/d0
35: d1 = (p2 + q2) ∗	

1 ∗ p2 + q2

36: tangential = −(q2 ∗ r − 2 ∗ p ∗ q ∗ s + p2 ∗ t)/d1
37: � From literature, see eqns. (7)
38: return slope, profile, tangential

39: procedure MAIN(file_name,max_aggs)
40: � Input: DEM file name, max number of aggregations
41: aggs, z, xz, yz, xxz, yyz, xyz← INITIALIZE()
42: while aggs <= max_aggs do
43: aggs, z, xz, yz, xxz, yyz, xyz←
44: AGGREGATE(aggs, z, xz, yz, xxz, yyz, xyz)
45: if aggs > 1 then
46: � Curvature requires at least 2 aggregations
47: slope, profile, tangential←
48: CURVATURES(aggs, z, xz, yz, xxz, yyz, xyz)
49: Output(aggs, slope, profile, tangential)

covers a distance of (w/4) = (1/2). Later aggregations shift812

the coordinate systems by integer values that are powers of 2.813

In this pseudocode, curvatures are computed for each aggre-814

gation step, i.e., profile and tangential curvature rasters are815

Fig. 8. (Top Left) Artificial dataset consisting of ten Gaussian hills of
height 100. (Top Right) Slope of that dataset. (Bottom Left) Profile curvature.
(Bottom Right) Tangential curvature. The sign conventions are given as
in [13].

output for all window sizes that are powers of 2 up to the 816

largest one. If only the curvatures for the largest window size 817

were of interest, the procedure CURVATURES would only have 818

to be called once at the end. As presented, all intermediate 819

curvatures are returned, as is appropriate when a multiscalar 820

analysis is of interest. For simplicity, the pseudocode also 821

includes the slope computation among the curvatures rather 822

than as a faster limited-purpose slope function. 823

IV. EXPERIMENTS 824

A. Evaluation on Artificial Data 825

As a first test, the IART algorithm is applied to an artificially 826

created landscape as described in Section II-F. Specifically, ten 827

Gaussian hills were created with randomly selected centers and 828

widths chosen randomly within a range of 10%–30% of the 829

image size. The height is chosen to be 100 m for each hill, 830

assuming a raster size of 1 m. The intention of using such 831

a large height is to detect problems more effectively. For the 832

sake of reproducibility, the same seed (1) was used for the 833

entire evaluation. Table II shows the values for the centers (μ 834

and ν) and widths of the Gaussian hills (σ ) as a fraction of 835

the image size. 836

Fig. 8 shows the resulting image in the top-left corner. 837

Some of the peaks can be seen individually, and some merge 838

and create ridges, such as one toward the left of the image. 839

Moreover, troughs can be seen around some of the hills, such 840

as for a hill in the bottom-right corner. The top-right panel 841

shows the slope of the landscape, as calculated by (34). The 842

tops of the Gaussian hills have zero slope, as expected. There 843

is also a ridge toward the left that shows a negligible slope. 844
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TABLE II

CENTERS AND WIDTH OF GAUSSIAN HILLS USED AS
ARTIFICIAL DATASET

The largest slopes can be seen near a tall hill in the top-left845

corner, which is a superposition of primarily the four out of ten846

hills that are located in the top-left quadrant in the landscape.847

The bottom-left panel shows the profile curvature. It is848

largest for steep hills with small σ , except where those hills849

show ridges in the direction of other hills. The ridge toward850

the left shows small profile curvature specifically on the top851

portion, where the slope is directed along the ridge. The tan-852

gential curvature in the bottom-right panel, in contrast, is large853

around those ridges and smallest in the troughs around hills854

that are at the base level of the landscape and hence largely855

constant perpendicular to the slope. Note that all curvatures are856

positive when downward, see (8), following the mathematical857

definition that is used in the article by Florinsky [13], but not858

of the ArcGIS software, which uses a positive sign for upward859

profile curvature.860

When processing this image with a sliding window of861

increasing sizes up to 64 × 64, without added noise, with862

either the proposed IART algorithm or ArcGIS, there were no863

obvious changes even for the largest window sizes. This is to864

be expected since the Gaussian nature of the landscape makes865

it relatively smooth in comparison with what one may find in866

a real landscape. The widths of the Gaussian hills was selected867

such that the window size would rarely exceed σ .868

The analytically calculated topographic variables were then869

compared with their numerically computed counterparts and870

evaluated using the MAPE, as shown in Fig. 9. For the871

evaluation using ArcGIS, the sign was adjusted to match872

the theoretical definitions, which meant reversing the sign873

of the profile curvature. For window sizes of w > 3, the874

following processing was used. Focal statistics was used with875

a square window of the size w f = w − 2 followed by the876

conventional curvature computations using a 3 × 3 window.877

Since both processing types amount to a convolution, this878

approach results, in total, in effective windows of w × w raster879

points. Since the periphery of the resulting image were highly880

distorted, a w/2 frame was removed such that the comparison881

with the IART algorithm, for which the frame is removed as882

part of the process, would be fair.883

For slope, there is relatively little difference between the884

theoretical and actual values (the top of Fig. 9) until the largest885

window size of 64 × 64. Since the w = 64 is greater than886

some of the σ values of hills, which can be as small as 10% of887

the 512 image size or 51 raster points, substantial differences888

Fig. 9. MAPE in comparison with theoretical values for the artificial data
with no noise, for the IART algorithm (red crosses), and ArcGIS (blue
circles). Variables of interest: (Top row) slope, (second row) profile curvature,
and (Bottom row) tangential curvature. For ArcGIS the processing includes
smoothing (for window sizes >=8) followed by (Top row) slope, (second
row) profile, and (Bottom row) planform curvature computation.

Fig. 10. R2 in comparison with theoretical values for the artificial data
with noise for the IART algorithm (red crosses) and ArcGIS (blue circles).
Variables of interest: (Top row) slope, (second row) profile curvature, and
(Bottom row) tangential curvature. For ArcGIS the processing includes
smoothing (for window sizes >=8) followed by (Top row) slope, (second
row) profile, and (Bottom row) planform curvature computation.

are expected and can be seen. For profile curvature (second 889

panel), the differences in comparison with the theoretical 890

values are higher, but still only major at the largest window 891

size. 892

The comparisons so far do not provide evidence for benefits 893

of using large window size since, in all cases, accuracy 894

declined with increasing window size. The situation changes 895

when random noise of up to 10% of the maximum height of 896

the hill is added. In fact, when doing so, the MAPE became so 897

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on July 10,2023 at 00:14:40 UTC from IEEE Xplore.  Restrictions apply. 



DENTON et al.: LARGE-WINDOW CURVATURE COMPUTATIONS FOR DEMs 3000620

Fig. 11. (Left) Slope, (Middle) profile curvature, and (right) tangential
curvature using the IART algorithm on artificial data with noise, for window
sizes from top to bottom: w = 4, 8, 16, 32, and 64.

large throughout the experiment that it was no longer a useful898

measure of estimation quality.899

Instead, the R2 value was used, as can be seen in Fig. 10.900

Note that, in contrast to MAPE, a large value is now desirable.901

R2 values for all algorithms suggest that the results are largely902

useless for the smallest window sizes, which are 3 × 3 in the903

case of ArcGIS and 4 × 4 in the case of the IART algorithm.904

Because the noise was added at the level of individual raster905

points, the topographic features that can be attributed to the906

noise overwhelm the underlying artificial landscape. For larger907

window sizes, slope has good R2 values for both ArcGIS908

Fig. 12. (Left) Slope, (Middle) profile curvature, and (Right) planform
curvature using ArcGIS on artificial data with noise for effective window
sizes from top to bottom 3 (no smoothing), 8, 16, 32, and 64, i.e., smoothing
using focal statistics with window sizes 6, 14, 30, and 62, respectively (see
the text).

and the IART algorithm, but curvature is still problematic. 909

Curvature remains problematic for both ArcGIS and the IART 910

algorithm for a window size of 8 × 8. 911

When the curvature is computed over windows of size 912

16 × 16 and larger, the IART algorithm has reasonably high 913

R2 values even in this noisy setting. Yet, ArcGIS curvatures 914

are still not very useful, despite the substantial smoothing of 915

larger window sizes. For the largest window sizes (32× 32 and 916

64 × 64), R2 for the IART algorithm is very close to 1. This 917
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Fig. 13. Difference between numerical and theoretical curvatures for w =
16 using artificial data with noise. The output is normalized to the range
between the 10th and 90th percentiles of occurring values.

is the case although the theoretical slope and curvatures do not918

account for the window size at all. In other words, the benefits919

due to the averaging over noisy data points are overwhelmingly920

more important than any drawbacks due to the theoretically921

poorer match. This is the case even for ArcGIS, although922

the ArcGIS results do not approach R2 = 1 until the largest923

window size of 64 × 64 and are lower than the results of the924

IART algorithm even then.925

The differences in quality between the IART output and926

ArcGIS’s curvature results can be seen in Figs. 11 and 12.927

The figures show slope (left), profile (middle), and plan (right)928

for increased window sizes from top to bottom. While slope929

is acceptable for all but the unsmoothed image, curvatures930

do not become clear until the lower rows of the images.931

In Fig. 11, it can be seen that the IART algorithm produces932

the characteristic features with clarity for window sizes w =933

32 and w = 64, and even the results for a 16 × 16 window934

provide the detailed output albeit with some noise. The ArcGIS935

output is much noisier in comparison.936

Note that the images are normalized to the maximum and937

the minimum of the range of occurring numbers. The consis-938

tently much larger ranges of the ArcGIS values are indicators939

of the much more substantial noise in those images. Even940

when it may be possible to detect the features of the underlying941

image visually, any computational downstream analysis would942

suffer from that noise. For example, for window size w = 32,943

the curvatures can be discerned even in the ArcGIS output,944

Fig. 14. Difference between numerical and theoretical curvatures for w =
32 using artificial data with noise. The output is normalized to the range
between the 10th and 90th percentiles of occurring values.

but the displayed range of values is more than twice that of 945

the IART output. Those large random values would negatively 946

affect any further processing. 947

Fig. 13 shows the differences between window-based and 948

ground-truth results at the level of individual raster points, for 949

a window size of w = 16. This visualization allows analyzing 950

the differences between the numerical and theoretical curva- 951

tures in more detail. It can be seen that the noise is dominating 952

both the result of the proposed IART algorithm and the ArcGIS 953

comparison approach. However, the range of the IART output 954

is smaller by about a factor of 5. The ArcGIS output shows 955

such rapid fluctuations that they can be barely distinguished. 956

Note that the fluctuations are largely horizontal and vertical, 957

which matches the theoretical considerations in Section II-E. 958

When applying curvature computations on smoothed images, 959

curvature is effectively computed as differences between one- 960

or two-pixel columns and rows. The horizontal and vertical 961

streaks in the output are tell-tale signs that noise fluctuations 962

are averaged in a predominantly vertical or horizontal fashion, 963

but not in a way that uses the entire window. 964

One might consider increasing the window size yet further 965

to achieve more smoothing, but doing so creates inaccuracies 966

that cannot be prevented because a larger region in the image 967

is summarized with each window. To test the effect of 968

inaccuracies due to large window sizes, the analysis from 969

Fig. 13 was repeated for a window size of 32 × 32. The 970
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Fig. 15. 500 × 500 DEM showing a tributary to the Souris River in Ward
County North Dakota.

output can be seen in Fig. 14. First, it can be noted that for971

both algorithms, the errors are reduced, although they are more972

substantially reduced for the IART algorithm than for ArcGIS,973

and the ArcGIS output at window size 32 × 32 is noisier than974

the IART output for window size 16 × 16. Second, while975

the random noise is still substantial for ArcGIS, the size of976

the smoothing window is already creating distortions that are977

noticeable as errors. Distortions are a mathematically quan-978

tifiable consequence of window size and cannot be avoided in979

either approach, but when the noise reduction goals of window980

smoothing have effectively succeeded at the w = 32 window981

size for IART, the ArcGIS errors are still very large. Notice982

that the scale of the ArcGIS errors is a full order of magnitude983

larger than that of IART errors. As such, the IART algorithm984

is far more effective at accomplishing the goals of window985

smoothing toward noise reduction.986

B. Evaluation on DEM Data987

The evaluation on real elevation data uses a DEM of size988

500 × 500 with 1-m resolution from a tributary to the Souris989

River in Ward County, North Dakota. These data come from990

QA Program for High Resolution Lidar Data for Multiple991

Counties in North Dakota, Phase 7, and specifically from the992

Ward County block [63]. The data were collected in 2017 and993

published in February 2018. It has 1-m spatial resolution and994

was collected to have 0.1-m vertical accuracy. The DEM is995

in NAD83_UTM_zone_14N projection (easting 314800 and996

northing 5359750) The DEM itself can be seen in Fig. 15.997

Fig. 16 shows the result of processing with the IART998

algorithm, following the same steps as in Section IV-A, except999

that the ground truth for this landscape is unknown. As pre-1000

viously, the results in the top row, which correspond to a1001

w = 4 window size, show a substantial level of noise. This1002

noise can also be observed quantitatively from the large range1003

in which both profile and tangential curvature are observed.1004

For increasing window sizes, details become increasingly 1005

clearer and the range of curvatures decreases. At window 1006

size w = 16, in the third row, substantial detail about the 1007

water systems in this area can be identified. The profile image 1008

provides information along the flow direction into the water 1009

systems, while the tangential image elucidates many additional 1010

tiny ridges and creeks perpendicular to the slope, which, 1011

respectively, disperse or condense the flows. The next larger 1012

window sizes of w = 32 removes yet more noise while still 1013

preserving much of the detail, which promises to be useful 1014

in further analyses. For this elevation model, the result of 1015

processing with window size w = 64 starts losing detail and 1016

may be most suited if a broad overview is intended. It can 1017

also be seen that, at this level, the bottom of the largest river 1018

shows swapping of gray shades between profile and tangential 1019

curvature. This is to be expected because the flow points 1020

toward the river in most of the river bed except at the center 1021

of the river itself, where the flow points along the river path. 1022

Overall, the loss of detail in the bottom is such that most 1023

practitioners would likely prefer a smaller window size given 1024

the resolution of the DEM. Note, however, that this is a 1-m 1025

DEM, and larger window sizes are bound to be useful for 1026

DEMs of yet higher resolution. 1027

Fig. 17 shows the corresponding results of processing in 1028

ArcGIS. In the top row, slope is the only analysis type 1029

that is useful. Key features of the water system are barely 1030

visible in the profile and planform processing. In the second 1031

row, which corresponds to an effective w = 8 window size 1032

(smoothing with a 6 × 6 window, followed by application of 1033

the 3 × 3 window for the curvature computation), the slope 1034

representation becomes more pronounced and the profile and 1035

planform emerge. Residual noise levels are not as problematic 1036

for these data for window sizes for w = 8 and higher as for 1037

the artificial data since these are high-quality data with high 1038

vertical resolution. However, the results still show pronounced 1039

oscillations in the East–West and North–South directions, 1040

which are consistent with the discussion in Section II-E and 1041

the observations in Fig. 13. 1042

For the DEM data, it is not possible to subtract a ground 1043

truth for visualizing errors on a per-raster-point basis as for 1044

artificial data. With no ground truth available, it is harder 1045

to confirm which curvatures are correct. However, there is 1046

no reason to assume that this region should have predomi- 1047

nantly East–West and North–South curvature oscillations. The 1048

processing using the IART algorithm does not show any such 1049

distortions. 1050

C. Performance 1051

For the performance analysis, a much larger raster of 1052

size 5000 × 5000 was used. The processing was done a 1053

Dell Mobile Precision 5560 Processor 11th Gen Intel Core 1054

i5-11500H @ 2.90GHz with 16.0-GB RAM. While the system 1055

has a NVIDIA T1200 w/4GB GPU, the IART code is not 1056

implemented to use it. Although ArcGIS can in principle 1057

make use of GPU processing, this feature was not used in 1058

the evaluation. 1059
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Fig. 16. (Left) Slope, (Middle) profile curvature, and (Right) tangential
curvature using the IART algorithm on artificial data with noise, for window
sizes (top to bottom) w = 4, 8, 16, 32, 64.

Fig. 18 shows the contributions to the two types of process-1060

ing. The largest contributions for both approaches come from1061

the aggregation and focal statistics. The slope and curvature1062

computations are comparatively fast and do not depend on1063

window size. Since profile and tangential/planform require1064

very similar processing times, the two were not distinguished1065

in this figure.1066

Whether the ArcGIS focal statistics or the IART aggregation1067

is faster and scales more favorably depends to some extent1068

on how they are used. If output at all powers of two of1069

window size is desired, the IART algorithm has constant1070

Fig. 17. (Left) Slope, (Middle) profile curvature, and (Right) plan curvature
using ArcGIS on the landscape from Fig. 15, for effective window sizes top
to bottom 3 (no smoothing), 8, 16, 32, 64 (see Section IV-A).

scaling (black line, triangles up) since each aggregation builds 1071

on the previous one. Notice also that these iterations have 1072

approximately the same runtime regardless of the level of 1073

aggregation. In other words, the shift by δ = w/2 raster 1074

points that was discussed in Section III does not affect the run- 1075

time negatively. ArcGIS does not offer any such incremental 1076

processing. For ArcGIS, the focal statistics (red line, circles) 1077

has to be computed from scratch for each window size, and 1078

this computation takes longer for window sizes 32 and 64. 1079

If the IART processing is to be done to the final size without 1080

employing intermediate aggregation steps, the intermediate 1081

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on July 10,2023 at 00:14:40 UTC from IEEE Xplore.  Restrictions apply. 



DENTON et al.: LARGE-WINDOW CURVATURE COMPUTATIONS FOR DEMs 3000620

Fig. 18. Aggregation and slope/curvature computation contributions to the
runtime for the IART and ArcGIS code for a 5000 × 5000 raster image. See
the text for possible combinations.

results are still needed and have to be computed. The resulting1082

processing time is logarithmic in the size of the window, which1083

appears linear in Fig. 18 with its logarithmic x-axis. The IART1084

code was not optimized for this use case, but new memory was1085

allocated in each iteration such that intermediate copies could1086

be preserved. Even without optimizations, the Python-based1087

IART implementation is within the same runtime range as1088

ArcGIS and ArcGIS scale slightly worse. Note that the focal1089

statistics algorithm has to solve the same problem of inherently1090

quadratic scaling. ArcGIS has been optimized over decades1091

and clearly also avoids the quadratic cost.1092

One could entertain the thought of aggregating the regres-1093

sion terms
�

xz,
�

yz,
�

xxz,
�

yyz, and
�

xyz using1094

ArcGIS’s focal statistics tool, so as to gain the benefit of a1095

mathematically well-founded regression fit to the data and1096

avoid the approximations of their current two-step pipeline.1097

Such a hypothetical approach would amount to running their1098

focal statistics tool six times, once for
�

z and, in addition, for1099

each of the five regression terms
�

xz and so on (see dotted1100

line “Arc Hypothetical” in Fig. 18). This approach suffers from1101

a poorer scaling of the focal statistics tool. For window size1102

w = 64, running the focal statistics tool on all six regression1103

terms would amount to more than twice the runtime of the1104

IART algorithm. However, the benefit in comparison with1105

IART would be that arbitrary window shapes could be used.1106

Beyond the aggregations and focal statistics, slope and1107

curvature computations contribute to the final result. For the1108

IART algorithm, these take only about 1 s for the 5000 ×1109

5000 image under consideration, which is substantially less1110

than the corresponding computations in ArcGIS. The reason1111

why this portion is faster in the IART algorithm is that1112

the aggregation steps already produce the sums and sums1113

TABLE III

EXAMPLE SCENARIOS OF HOW RUNTIME CONTRIBUTIONS ARE
COMBINED WHEN COMPUTING CURVATURES

of squares from which the regression coefficients can be 1114

calculated directly without a need for further aggregations 1115

across raster neighbors. In the ArcGIS approach, the focal 1116

statistics step still leaves the need for slope and curvature 1117

computations across 3 × 3 windows, which takes more than 1118

twice as long. 1119

Table III shows some example scenarios together with the 1120

contributions that would have to be added to estimate the 1121

computation time in each case: 1122

In summary, it can be seen that even with an implementation 1123

in Python, the overall performance is comparable to ArcGIS 1124

for substantially improved output quality, as discussed in 1125

Sections IV-A and IV-B. The scaling of the proposed IART 1126

algorithm is fully logarithmic in window size, as expected 1127

from theoretical considerations, and the output on every length 1128

scale is produced as a byproduct of the aggregation process, 1129

allowing multiscale analysis at very little additional cost. 1130

V. CONCLUSION AND FUTURE WORK 1131

An algorithm was presented for computing regression-based 1132

curvatures over windows of sizes that can be arbitrarily large 1133

powers of 2. The definition follows Evans’ original idea of 1134

fitting quadratic functions to elevation points. Meanwhile, the 1135

proposed algorithm avoids the need for encoding specific 1136

window sizes that was inherent in previous approaches and 1137

is, hence, suitable for modern high-resolution DEM data. 1138

Limits to the window size were avoided through an iterative 1139

aggregation approach, in which each iteration amounts to a 1140

doubling of window size. 1141

The algorithm was evaluated over artificial data that con- 1142

sist of ten hills in the shape of Gaussian functions. Point- 1143

based curvatures were computed analytically and used as 1144

ground truth. Deviations between window-aggregation results 1145

and the ground truth increased in the noise-free setting, 1146

as would be expected. Even in that setting, the results of 1147

the proposed window-aggregation algorithm were closer to 1148

the ground truth than those of the comparison approach of 1149

using ArcGIS’ focal statistics tool followed by conventional 1150

curvature computations. 1151

When random single-pixel noise was added, the match 1152

between window-aggregation results and ground truth, as mea- 1153

sured by the R2 value, increased up to the largest window 1154

size of 64 × 64 raster points. In other words, larger window 1155

sizes consistently resulted in a closer approximation of the 1156

analytical point-based curvatures than smaller ones, due to 1157

the noise reduction associated with the averaging. These 1158
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observations support the value of using larger windows than1159

is possible for typical versions of Evans’ regression-based1160

curvature specifications.1161

A two-step approach of first averaging elevation data1162

and then applying small-window curvature computations also1163

showed a reduction in noise with increasing window size, but1164

the quality was much poorer than for the proposed single-step1165

algorithm that computes regressions over windows directly.1166

This conclusion could be drawn both from a quantitative1167

analysis of the R2-values with respect to the ground truth1168

and also from an inspection of the difference between indi-1169

vidual raster points. While both the proposed, single-step1170

and the comparison, two-step algorithms show the predictable1171

differences between the window-level results and the point-1172

based curvatures, noise in the resulting curvature output1173

makes the comparison approach much less useful. Moreover,1174

in the comparison algorithm, the noise showed horizontal1175

and vertical streaks that are clear evidence of averages being1176

taken over only a small portion of the raster points in the1177

averaging windows. This behavior is expected because all but1178

edge values cancel when differences are taken between two1179

neighboring raster points, each of which represents an average1180

over a window.1181

The algorithm was furthermore evaluated on 1-m resolution1182

DEM data from the Souris River Basin in North Dakota. This1183

evaluation supports the notion that at such high resolution,1184

the results of curvature computations for small-window sizes1185

are dominated by noise and not useful. While curvatures for1186

window sizes of 4 × 4 barely show structure, interesting1187

features emerge when window sizes are increased. While1188

averaging also helps in the two-step comparison approach, the1189

results of the evaluation on real data suffer from the same1190

horizontal and vertical streaks as those in the evaluation on1191

artificial data, and they are of noticeably lower quality.1192

In summary, an approach was presented for computing1193

high-quality curvature rasters from high-resolution DEM data1194

and bypass approximations that are commonly made in this1195

process. While the approach has consistently higher quality1196

than existing ones, the computation time is comparable and1197

the implementation scales slightly better with window size.1198

Generalizing the principles of the proposed algorithm to any1199

of the topographic variables that rely on polynomial fits would1200

be straightforward, and even some other geomorphometric1201

variables satisfy the additivity criterion that underlies its1202

effectiveness. With the increase in availability of elevation1203

data, this work promises to become increasingly relevant for1204

addressing the important challenges of understanding surface1205

hydrology and erosion.1206
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