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Large-Window Curvature Computations for
High-Resolution Digital Elevation Models

Anne M. Denton™, Member, IEEE, Rahul Gomes

Abstract— With the increasing availability of high-resolution
digital elevation model (DEM) data, a need has emerged for
new processing techniques. Topographic variables, such as slope
and curvature, are relevant on length scales far larger than
the pixel resolution of modern DEM datasets. An approach for
computing slope and curvature is proposed that uses standard
regression coefficients over large windows while generating out-
put on the full resolution of the original data, without adding
substantially to the computation time. In the proposed window-
aggregation approach, aggregates for fitting a quadratic function
are computed iteratively from the DEM data in a process that
scales logarithmically with the window size. It is shown that
the window-aggregation algorithm produces the results of much
higher quality than the two-step process of applying neighbor-
hood operations such as focal statistics followed by small-window
topographic computations, at comparable computational cost.

Index Terms— Computational infrastructure and geographic
information system (GIS), light detection and ranging (LiDAR)
data, surface and subsurface properties.

I. INTRODUCTION

IRBORNE light detection and ranging (LiDAR)
technology has resulted in an abundance of
high-resolution digital elevation models (DEMSs) with

resolutions of 1 m or less [1]. Applications of DEMs include
understanding surface hydrology [2], [3], [4], [5] and soil
erosion [6], [7] and performing surface segmentation [8], [9].
Many topographic variables can be derived from DEMs, with
slope and curvature among the most important ones [10],
[11], [22], [13], [14], [15].

It is assumed throughout this article that the extraction of
a digital topographic model from LiDAR measurements has
been completed and a DEM has been constructed. Inference of
topography from vector data, including the removal of surface
vegetation and built objects [16], is in itself a challenging topic
that has recently gained in importance. Artificial intelligence
approaches are commonly used to improve reconstruction
quality [17], [18] and model vegetation [19], [20]. The use
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Fig. 1. Schematic of a large window fit to a noisy DEM.

of curvature and elevation together has been shown to help
in terrain reconstruction [21], [22], [23]. The presented work
assumes that any such steps have been completed.

The history of the development of slope and curvature
variables has been dominated by the use of 3 x 3 pixel
windows [24], and the corresponding algorithms are most
widely available in geographic information systems (GISs),
such as ArcGIS [25]. Such window sizes are appropriate
when the raster resolution is already on a length scale that is
geomorphometrically relevant, i.e., the curvature corresponds
to processes that relate to the formation of the landscape.
For 1-m DEMs, it is not unlikely that variations between
neighboring raster points are due to imperfect processing of the
DEM. This type of high-frequency noise is a relatively recent
problem, and until the advent of LiDAR, too low resolution
of DEMs was a much bigger concern.

For high-resolution images, the appropriate window size
can be easily 64 x 64 or higher. By default, an algorithm
that inspects all raster points in such a window would require
accessing more than 4000 elevation values for each output cur-
vature value. This requirement creates computational complex-
ity issues, even when common regression-based definitions
of curvature can be naturally generalized to large windows.
Already in 1980, Evans [26] proposed that curvature could be
defined based on regression. At the time, he used this definition
for driving coefficients over 3 x 3 windows. Wood [27],
[28] later proposed a model of curvature that is applicable
to larger windows, but the scope was limited to windows
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of sizes not much larger than 5 x 5 or 7 x 7. The ability
to increase window size for working across multiple window
scales and for reducing the impact of errors in DEMs is well
documented [29]. However, Wood’s solution would not be
practical for windows with thousands of data points, and with
the DEM resolution in the 1990s, there was little motivation
toward using such large windows.

Other than performance considerations, there is nothing
fundamental that limits the use of regression-based curvature
definitions to small-window sizes. Fig. 1 shows the problem.
Elevation data are treated as sets of noisy measurements that
depend on 2-D spatial coordinates. In statistics, quadratic
functions are fit routinely to large datasets. The curvature prob-
lem is only special in the sense that this same computation,
conceptually, is needed for every output raster point in the
DEM. Performing this computation by iterating over all points
in each window separately would be prohibitively slow. The
problem can be made computationally tractable by recogniz-
ing that polynomial regression requires nothing but additive
functions, i.e., functions for which all final aggregates can be
produced by aggregating previous aggregates. This property
enables a massive reuse of intermediate results between shifted
windows.

The contribution of this work is to make computationally
feasible a window-based regression task that was defined
by Evans four decades ago, but for which the need for
applying it to large windows is driven by recent increases
in the DEM resolution. The regression does not involve an
approximation per se, but there are some constraints on the
proposed window-aggregation algorithm that could be viewed
as approximations. Specifically, windows are expected to be
square and their size to be a power of 2. The discussion
is limited to geographical regions small enough that Earth’s
spherical shape can be ignored and the DEM can be treated
as defined within a plane in the Euclidean space. EXxisting
implementations of regression-based curvature measures are
only available for windows with a small fixed number raster
points. The de facto workaround of preprocessing the data
by using a focal statistics tool for smoothing [25], [30] and
then applying a small-window definition of curvature is not
equivalent to the original regression problem and can hence
be viewed as an approximation. Section IV shows that, in the
presence of noise, this two-step approach results in a far
noisier output than regression-based curvature. The latter has
the added benefit that simple linear regression is arguably
one of the best-understood tools in statistics. Minar et al. [31]
highlighted the importance of using well-understood measures
toward achieving exactness in modeling.

Another approach for working with high-resolution data is
to use downsampling for converting it to a scale at which
3 x 3 windows are useful. Such an approach largely misses
out on the promise of higher resolution, although it may
help alleviate accuracy concerns that have been discussed
extensively [32], [33], [34], [35]. The importance of scale is
well known in the modeling of topographic data [36], [37],
[38], [39], and problems related to 3 x 3 windows have been
discussed extensively [35], [40], [41], [42], [43], [44], [45].
MitaSova and Hofierka [46] used spline-based interpolation to
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Fig. 2. Process for aggregating sliding windows shown for the first three

8 x 8 windows in DEM: first iteration (top row) produces 2 x 2 subwindows,
second iteration produces 4 x 4 subwindows, and third iteration (bottom row)
produces 8 x 8 subwindows.

achieve an independence of the raster scale, and triangulated
irregular networks have been used for computing curvature
without being tied to a particular grid [33].

The proposed approach uses a conventional mapping from
an input grid of square raster points to an output grid of the
same resolution. It also assumes that the Earth’s surface can be
considered as a plane within a Euclidean vector space. Earth’s
curvature, which is important for low-resolution DEMs [47],
[48] and creates significant challenges when integrating data
from multiple sources [49], is not the focus of the types of data
analysis considered, as can be seen from a simple estimate:
At 1-m resolution, a 64 x 64 window, which is the largest
considered in this article, only has a spatial extent of 64 m
in both dimensions. For conventional Landsat data, with its
30-m resolution, even a window as small as 3 x 3 raster points
would have a larger spatial extent (90 m in both dimensions).

Fig. 2 shows the aggregation process that underlies the
window-aggregation algorithm for the first three windows of
size 8 x 8. The top row corresponds to the first iteration
over the dataset. Aggregation is done over all sliding windows
of size 2 x 2. The aggregates represent the middle point
in the 2 x 2 window, which is not a raster point in the
original raster. This shift by half a pixel is accounted for
through adjustments in the metadata. Since the windows in the
window-aggregation algorithm all have sizes that are powers
of 2, there is no central pixel that is aligned with the original
raster for any of the window sizes. All the results are treated
as shifted by (w — 1)/2 in both dimensions, and the shift
is reflected in the metadata of the file. Processing the result
such that the raster matches with the original data requires
an additional reraster step. Note also that each image is
smaller by w — 1 pixels than the original one, i.e., there is
a frame of width (w — 1)/2 around each of the output maps.
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In ArcGIS, an estimate of the periphery is returned even when
only incomplete information is available. For the window-
aggregation algorithm, it would be straightforward to fill the
periphery of large-window estimates by small-window ones,
but it was not done in this work for the sake of clarity. Note
that peripheral raster points were discarded for the comparison
algorithm as well. Not doing so would have amounted to an
unfair comparison since the peripheral points were of much
lower quality than central points.

The next iteration is shown in the middle row of Fig. 2.
In this step, windows of size 4 x 4 are produced from their
four quadrants. Note that the aggregates are not retrieved
from adjacent locations, but rather from locations that are
0 = 2 pixels apart. In general, the aggregation is done on
windows that are 6 = w/2 raster points apart, where w is the
current window size, which is twice w of the previous iteration
Weurrent = 20 = 2 wWprevious- NOt all of the 2 x 2 aggregates
that are within the area of the red window are used for
computing the 8 x 8 aggregates of that window. In fact, none
of the 2 x 2 aggregates that are useful for the evaluation of
8 x 8 aggregates of the first (red) window contribute to the
final aggregate of the second (green) window, as shown in
Fig. 2. Reuse becomes evident between the first and the third
window. From the top row, it can be seen that the first and
third windows share 12 out of the 16 2 x 2 aggregates that
contribute to the final 8 x 8 window. The final iteration is
shown in the bottom row. In this iteration, 8 x 8 windows are
constructed from their constituent 4 x 4 quadrants. For the
small example, reuse cannot be seen at this level, but away
from the borders of an image, any aggregate is reused four
times and itself uses aggregates that were reused four times.
It is this compounding of reuse that enables the logarithmic
scaling of the algorithm.

The doubling of the window size in each iteration means
that after n aggregation steps, the size of the window is
w = 2", Since every aggregation step takes approximately the
same time, the computation time can be estimated by solving
for n, with the result being n = log,(w). The scaling of
the algorithm with regard to w is hence O(log(w)), implying
that working with windows of size 64 x 64(= 4096) pixels
takes only twice as long as working with 8 x 8(= 64) pixel
windows. The default brute-force approach of scanning each
of the 4096 pixels in the window would take 64 times as long.
The complexity of the brute-force approach is quadratic in the
window size (O(w?)), which is prohibitive for large window
sizes.

In Section IV-C, it will be seen that, in practice, the
computational effort is comparable to the combined complex-
ity of preprocessing and computing curvature over DEMSs
in conventional approaches that produce approximate solu-
tions of much poorer quality. Meanwhile, the result of the
window-aggregation algorithm is a standard statistical fit to all
data with no ad hoc assumptions. Moreover, it is in the nature
of the algorithm that intermediate aggregates are computed,
which can be used for multiscalar analysis.

The iterative aggregation that enables the efficient process-
ing in this article has been previously used for calculating
correlations between attributes in multiple raster layers [50].

3000620

In previous work, Denton et al. [51] demonstrated that spatial
variables can be aggregated toward slope-related computa-
tions, an approach that is generalized to curvature in this work.
The potential of using regression-based mean curvature toward
prediction tasks was illustrated in [52].

A summary of curvatures and other topographic variables
is given by Schmidt et al. [11] and a visual interpretation was
done by Florinsky [13]. In GIS, the most important curvatures
are ones that are defined with regard to slope. Their practical
relevance stems from the force that gravity exerts on flows.
In this article, the focus is on profile curvature, which is the
curvature in the direction of the slope, based on the definition
proposed by Evans [10], and tangential curvature, which is
the curvature perpendicular to slope [53]. Concepts of the
window-aggregation algorithm could be equally used for the
mathematically interesting maximum, minimum, mean, and
Gaussian curvatures, but those measures tend to be of less
interest in practical applications.

Also of interest is the contour curvature or the curvature of
the contour lines within a 2-D plane, which is historically
called “plan” or “planform curvature.” However, tangential
curvature is a closer approximation than contour curvature
to the ArcGIS planform curvature, which is consistent with
the observation of Schmidt et al. [11] that the Arc/Info user
documentation discusses “plan curvature” as implementing the
equations for tangential curvature, given in [4] and [54]. Note
that the fit function used by Zevenbergen and Thorne [54]
includes nine terms instead of Evans’s six terms, which allows
it to fit a 3 x 3 window exactly. Zevenbergen and Thorne’s
equation includes terms that would be part of third and
fourth orders in a Taylor series, and some differences between
the presented results and ArcGIS’s are hence expected. The
challenges of relating published algorithms with actual imple-
mentations in systems is examined in detail by Blaga [12].

Slope and curvature are not the only types of derived
attributes that can be computed using iterative aggregation
of regression terms (IARTs) over sliding windows. Third-
order coefficients could be derived in the same form [55]
and some other properties that are commonly considered in
geomorphometric analysis [56], such as variance of the local
elevation distribution, may also be amenable to such process-
ing. Likewise, it would be possible to define window-based
slope of slope or slope of aspect measures, as they are
discussed by Hu et al. [57]. Evans and Minér [58] introduced
a taxonomy of curvature and other geomorphometric variables.
While iterative aggregation can be potentially applied to both
point- and area-based field variables, it is limited to ones, for
which the aggregation can be done in multiple steps, i.e., all
relevant aggregates have to be additive. Identification of further
additive geomorphometric variables and their computation is
left to future work.

I1. CONCEPTS
A. Basics of Window Aggregation

In the following, it is assumed that a high-resolution DEM in
Universal Transverse Mercator (UTM) Projection is available,
which allows considering the data as residing within a metric
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grid in the Euclidean space. The elevation z in meters is
effectively a dataset of samples of a potentially noisy function
Z(x, y), for which easting 0 < x < M and northing 0 <y <
N are also both given in meters. Notice that elevation datasets
may apply a scaling factor to the z-value, which is left out of
the original derivations for simplicity.

In a brute-force attempt, every possible window of a given
size of w x w raster points would be extracted out of the
overall dataset z(x, y) and averaged as follows:

>

X, yewindow at(Xo,Yo)

1
<Z(w) (Xo, y0)> = F Z(X: Y) (l)

where z is the elevation, xo and yp are easting and northing,
respectively, of the center of the window, and the notation (.. .)
signifies averaging. This aggregation would be performed over
each window, one at a time, M —w+1 times in the x-direction
(easting) and N — w + 1 times in the y-direction (northing).
The prohibitiveness of this approach for large window sizes,
which motivates deriving a way of rewriting the window-based
means over z, will be derived, in which aggregates from prior
iterations, corresponding to smaller window sizes, are used.

For simplicity, windows are indexed by their top-left corner,
i.e., ) holds the aggregate for the window that has io and
jo as its smallest value of i and j, respectively. The shifting
by (w — 1)/2 in each direction, which is required to place
the derived raster image such that the values are at the center
of the window they represent, is handled at the level of the
metadata. With that convention, (1) becomes

1 io+w—1 jo+w—1

<Z>|(;lz—_ Z Z Zij.

i=io i=io

)

Following the motivation in Section I, this sum is rewritten
in terms of its four constituent quadrants, which are assumed
to be available from the previous iteration at half the window
size:

io+w/2—1 jo+w/2—-1

(w)
<Z>i0wjo Z Z
i=ip i=Jo
1 iotw—1 jo+w/2—-1
T2 > >
i=iogtw/2  j=jo
1 io+w/2-1 jo+w—-1
+F Z Z Zjj
i=io  j=jotw/2
1 iog+w—1 jotw—1
D DD &)

i=ig+w/2 j=jot+w/2

The rewriting is possible due to the additivity property of
sums. In other words, for the summation, it is possible to
compute an overall sum as a sum of partial sums. A recursive
definition for z%) follows by substituting the definition of z{;"”
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for w' = w/2:

1\ w/2)

PRGN R CI P
1 (w/2)

() +—-(2),
@ = 8t @
(w/2)
+3 (D orw 22600/ fOFw =2
z; forw=1

Since windows cannot extend beyond image boundaries, the
following limits apply:ip <M —w+1and jo < N—w+ 1.
The number of windows that are returned in each iteration
decreases accordingly. Note that, although this recursive def-
inition captures concisely how (z) at a particular value of
w relate to those at w/2, a recursive implementation would
not have the necessary performance. Instead, an iterative
implementation is used, which computes averages one level
at a time.

The derivation so far has been limited to averaging the
elevation itself. Slope and curvature measures require com-
puting spatial derivatives of elevation, which use aggregates
that involve not only elevation but also the spatial coordinates.
As such, the aggregation process has to explicitly represent x
and y. In addition to (z), defined in (4), the following will be
needed:

) 1 igt+w—1 jotw-1
w
<Xz>i0j0 = F Z Xi Z Zij
i=ig i=Jo
) 1 jotw—1 ip+w—1
w
<yz>iojo =2 Z Yi Z Zij
i=Jo i=ig
) igt+w—1 ]o+w 1
<X Z>l0J0 = w2 Z Z Zij
i=io i=io
y\ () 1 jotw—1 io+w—1
<y Z>i0j0 - Z yl Z 4
i=Jo i=ig
) igt+w—1 jotw—1
w
<Xyz>i0jo = w2 Z Xi Z YiZj. 5)

i=io

The derivation of these quantities will be the subject of
Section II-D. First, the relationship between the geospatial
derivatives and a least-squares fit of a quadratic function
over an arbitrary window size will be discussed. Fig. 3
shows an overview of the steps in the algorithm and gives
a preview of where the equations that will be derived in
Sections 11-B and I1-C are needed. Section Il provides more
detailed pseudocode of the algorithm (Algorithm 1).

i=ip

B. Geospatial Derivatives From Least-Squares Fitting

Following [10] and [28], geospatial derivatives are derived
using least-squares fitting. However, unlike past approaches,
a recursive window definition is used for the fit, which
allows computing the coefficients, and thereby derivatives,
for arbitrarily large windows at logarithmic computational
cost. Before addressing these computational challenges in
Sections II-C and II-D, the relationship between slope and
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Initialize

Initialize <z> to DEM
Initialize <xz>, <yz>, <x?z>, <y?z>, <xyz>to 0

Repeat until max aggregations reached

Aggregate

Double window size w
Aggregate <z>, <xz>, <yz>, <x’z>, <y’z>,
and <xyz> using eqns. (23), (27) - (31)

If at least 2 aggregations done

Calculate Curvatures

Calculate profile and horizontal
curvatures using eqns. (6), (14), (17),
and (21)

Output Curvatures

Fig. 3. Outline of the algorithm.

curvature on the one hand and linear and quadratic derivatives
of a topographic surface on the other will be examined. The
notation used in the following goes back to Shary [59] and
is used in other publications on the topic as well [60]:

o0z oz
P=2o 95 oy
0%z 0%z 0%z
= < 5> = < 5> S= . (6)
ox2 oy? oXoy
With  these definitions, any of the linear and

quadratic topographic functions discussed, for example,
by Schmidt et al. [11] can be computed. In the following,
the focus will be on slope, profile (as proposed by Evans [10]),
and tangential curvature (as proposed by Krcho [53]). The
equations are given in the following [13], with a factor of
100 included that helps with discussing output:

G = arctan \/p? + g2

p’r 4+ 2pgs + gt
(2 +02)y/(1+ P+ ?)°
q’r — 2pgs + pt

(p? +0a?) 1+ p?+0?
g’r — 2pgs + p’t
(p? +02)°

V\{here_ G is the s_Iope, Kproper_profile is the curvature in th_e
direction of thg I|_ne of steepest dgscent, kpr_ope_tangential is
the curvature within the plane that is perpendicular to the slope
vector, and Keontour 1S the curvature of the contour line in a
2-D projection of the surface.

Differences between the curvature definitions are illustrated
by Florinsky [13]. It can be seen there that contour curvature

kproper_profile = —100

= —100

kproper_tamgential

Kcontour = —100 (7

3000620

TABLE |
MAPE BETWEEN COMPUTED AND THEORETICAL CURVATURES

[ MAPE [ ArcGIS Profile | ArcGIS Planform ]
Profile 1.35% 1276%
Proper Profile 234% 4377%
Tangential 940% 1.02%
Proper Tangential 1239% 44.6%
Contour 105% 99.0%

remains high even in regions with relatively low slope. Contour
lines can have high curvature no matter how flat regions are,
which is consistent with the mathematical representation that
has an additional factor of (p? 4+ g%)%/? in the denominator of
the contour curvature, in comparison with tangential curvature,
allows it to diverge for small slope. Tangential curvature,
in contrast, has a factor of (1 + p? + g?)%/2, which does not
tend to zero for small slope. The latter is somewhat comparable
to ArcGIS’s “plan curvature” as noted in [11].

Comparisons showed that none of these three curvatures
is exactly what is implemented in ArcGIS. In fact, a simple
test can be used to see that ArcGIS does not implement
mathematical curvature. The mathematical curvature of a dome
that is shaped like a section of a sphere is constant in
any direction, i.e., both profile and planform are constant.
Implementing the above formulas indeed produces this result.
Stretching the dome upward by multiplying every raster point
with a constant factor ¢, > 1 results in an ellipsoid that
has higher curvature in the middle than toward the periphery.
In contrast, ArcGIS’s curvatures are consistently larger toward
the periphery of a spherical dome than the center, as would
be expected for second derivatives. Moreover, the ratio of
peripheral to central curvature does not change, regardless
of the factor by which the dome is stretched upward. The
following portions of the above formulas satisfy the second-
derivative-like expectation that a constant factor leads to only
quantitative but not qualitative changes in curvature, i.e., that

Karcals(Cn * (X, y)) = cnxKareais(f (X, ¥)):

p?r + 2pgs + g2t

k i1e = —100
profile P2 + o2
q’r — 2pgs + pt
k ian] = —100 . 8
tangential 2+ (8)

Note that the sign of the profile definition is that of
the theoretical definition, which is the negative of what
is used in ArcGIS. The factors of ((1+ p? + g?)%)¥2 and
(1 + p? + g®)¥/? from (7) are now absent since they cause the
qualitative changes in behavior upon stretching a DEM. The
formulas in (8) indeed match the definitions that ArcGIS uses
best. This was established by calculating the mean average
percentage error (MAPE) for the numerically computed curva-
tures using a 3 x 3 window versus the analytical results for the
artificial landscape that is discussed in detail in Section IV-A.
Table | shows the results of that comparison. Note that
the artificial image is intentionally somewhat extreme, with
elevation changes of over 350 m within a 500 m x 500 m
area.
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It can be seen that the MAPE of ArcGIS’s profile is
clearly smallest with regard to the simplified profile definition
from (8), in particular 1.35%, and likewise ArcGIS’s planform
best matches the simplified tangential definition with an error
of only 1.02%. MAPE values close to or above 100% are
not considered meaningful since MAPE is not symmetric in
the values that are being compared. The only other error
small enough to consider is ArcGIS’s planform in comparison
with the proper tangential curvature from (7), which has
an error of 44.6%, consistent with the earlier discussion
that ArcGIS’s planform is overall more tangential-like than
contour-like. While implementations of all the above-listed
curvatures are provided, the definitions in (8) will be used
for the comparisons since they give the smallest errors for
ArcGIS.

The next step is to examine how the gquantities p, g, r, s, and
t can be derived from a least-squares fit of a quadratic function.
Generalizing the quadratic fit function y(@29 (x) = ax?+bx+c

to two dimensions gives
alo X
an y

Z(quad)(x,y):<x y)<aoo
+(by b1)<);>+c. )

a0
On the other hand, the function z(x, y) can be expanded into a
Taylor series and written in terms of the abbreviations from (7)
as follows:

1
Z0 (x, y) = E(X X Y—Yo)
8%z 0%z
" X2y OX0Y |y X — Xo
0%z 0%z Y — Yo
axay XoYo ayZ Xo Yo
+< 0z 0z ><X_XO>+
— — c
Xy Y Iy Y=Y

1 rs
=5 (x=% y—yo)(S t)

X — X
+(p q)|xm<y_y2) +c.

Apart from the factor (1/2) in front of the quadratic term,
this expansion has the same shape as (9). To avoid additional
parameters, the notation from (7) will be directly used in
the least-squares fitting, with agy = (r/2), a;; = (t/2), and
ay0 = (S/2). This fitting is done for each window, centered on
(Xo0, Yo). It is assumed that the variables x and y are defined
within a local coordinate system that has the center of the
window as its origin.

(x—xo>
Xy \Y Yo

(10)

C. Mapping Geospatial Derivatives to Window Averages

With these assumptions, the geospatial derivatives are
derived by fitting the following function to the data:

Z(WithW)(X’y):%(X Y)<rs ts><);)
+(p Q)G)*Q (1)
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Fig. 4. Spatial coordinates within a window of size 4 x 4.

A least-squares fit is performed by minimizing

<(Z(X, y) — (window) (X, y))2>

r t 2
=<(z— px—qy—ixz—sxy—iyz—c) > (12)

with respect to the six parameters p,q,r,s,t, and c. Toward
this goal, the partial derivatives with respect to each of the
parameters are set to zero. As a result, six linear equations
with six unknowns are obtained. Solving this system in all
generality may appear daunting, but fortunately, many of the
derivatives are zero.

Fig. 4 shows the coordinate system that is used for these
aggregations, for the example of a 4 x 4 window. In the
following, only square windows of sizes that are powers of two
are considered, but aggregates will still be defined and used
in such a manner that there is no upper limit to the possible
window sizes. The downward direction of the y-axis was
chosen for practical reasons and would have to be accounted
for in the computation of directional quantities that assume that
zero is North or up, those for which the righthandedness of
the coordinate system matters. From Fig. 4, it can be seen that
the averages (x) and (y) are zero because they are taken over
spatial points for which the positive and negative contributions
compensate exactly. On a square grid, for each x = x;, there
is a point with x = —x;. The term (xy) vanishes for the same
reason. More generally, the sample points are chosen such that
Vidj(xi = —x;)) and the same for y.

Of the terms that do not depend on z, only those are nonzero
that have an even number of both x and y instances. All others
vanish due to the symmetry. In other words, for the aggregates,
which are of the shape (x”ymzk>, where0<n<40<mc<
4, and 0 < k < 1, the averages with k = 0 vanish if either n

or mis odd
(x"y™) =0 if (nmod 2 =1) v (mmod 2 =1). (13)

Furthermore, the averages over x and y are independent, and
(x?y?) = (x?)(y?), resulting in the following equations:
p(x*) = (x2)

a(y?) = (yz)
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S06) + 5() +e= ().

On a square grid, points are spaced equally in the x- and
y-directions, hence (x?) = (y?) and (x*) = (y*. Since
these quantities do not depend on z, they can be calculated
analytically, see the following text. Solving for p,q,r,s,t,
and c gives

(14)

15
() — ) -

Aggregates that involve z, i.e., (), (xz), (yz), (x?2), (y?z),
and (xyz), have to be computed for each window. The window
aggregation will be discussed in Section 11-D.

Aggregates that depend only on the spatial coordinates,
including (x?) and (x*), remain the same for each window
and can be computed analytically. For the example window
with w = 4 in Fig. 4, the averages are computed over
X =-3/2,-1/2,1/2,and 3/2, or Zzizl(k—l/Z)Z. Each of
those terms contributes four times for each value of y. In the
general case of a window of size w, each value of x contributes
w times to the sum, and the total is normalized by the total
number of points w?

() = =20 Z(k - 1)
w Pt 2

This term can be computed using power sums [61]
n
1

> k= > (n? +n)

k=1

n
IS
k=1

Inserting (17) into (16) gives

2

(16)

(2n® +3n” +n). (17)

(20

2 : : w
- kK= k+ —
w k%; k%; 8

w?—1
= . 18
o (18)

)
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T-172
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Same for quadrants VY y=y,w/4 fory <0

(xg,¥4) and (x,,y,) =y, +w/4 fory >0

Fig. 5. Combining quadrants: (Top) two 4 x 4 windows are shown that are
combined to form (Bottom) top two quadrants of an 8 x 8 window.

The fourth-order term

! 7 1\

can be calculated similarly, using the additional power sums
from [61]

(19)

(n* +2n% +n?)

ENJEN

n
Sk =
k=1

n
1
> k* = —(6n° 4+ 15n* 4+ 10n° — n). (20)
30
k=1
The result is
4 _10w? +7
(x*) = w (21)
240
The frequently occurring term, (x*) — <x2>2, is
4 2
4 n2 w'—5w"+4
— = 22
() — ()7 = L2 @

This term is zero for w = 2, which is consistent with the obser-
vation that curvature cannot be calculated over windows of size
2 because two data points cannot be used to unambiguously fit
a quadratic equation. For w = 4, the term is 1. For w > 4, the
term is nontrivial, but since it can be computed algebraically,
it does not contribute to the scaling of the algorithm.

D. Window Aggregates of Products of Elevation and Location

The process of simply adding smaller windows from pre-
vious iterations, which was outlined at the beginning of the
section, does not work for aggregates that involve spatial coor-
dinates because the relative coordinate systems changes. The
aggregation involves shifting the coordinate system from being
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centered on the windows of size w/2 to being centered on the
combined window of size w. Fig. 5 specifically shows the
changes in the x-coordinate of the coordinate system. When
computing aggregates over 4 x 4 windows, the coordinate
systems are centered on those windows. In the next iteration,
which uses 8 x 8 windows, the coordinate system of each
4 x 4 quadrant has to be shifted accordingly. The same logic
is applied to the y-coordinate.

The z-values for the full window are given based on the
z-values of the constituent quadrants as follows, where the
notation zgo is used for zj,, zig for zi 4. 2,j,, and so on:

Zoo(Xo, Yo), forx <0,y <0

2%, y) = Z10(X1, Yo), forx >0,y <0 (23)
Z51(%o, Y1), forx <0,y >0
Z11(X1, y1), forx >0,y >0

where Xo = X+ (w/4), X1 = X — (w/4), Yo = Y+ (w/4), and
y1 = Yy — (w/4). Notice that when averages over quadrants
were computed in the previous iteration, there was only one
definition of x, and that definition involved a different coordi-
nate system for each of the windows that are now aggregated.
In the following, those four coordinate systems have to be
distinguished such that a systematic coordinate transformation
can be done into the shared coordinate system of the new
iteration. Values for each of the coordinates within quadrants
are within the range —(w/4) < Xo, X1, Yo, Y1 < (w/4).

For the averaged value of z, the shifting of coordinates does
not have an impact on the calculation of averages, and the
averaged value (zg) is simply the sum of the averages that
were computed in the previous iteration (z>

2) =

(<Zoo> + <Zlo> + <201> + <211>)

(2o + (21 + (D +(2)1)
= (z .
(@)
The last line introduces a simplified notation that indicates
that, for this average, the quadrants are all added. For other
averages, some quadrants may be subtracted, so a notation is

used that specifies the sign used in the aggregation of each of
the quadrants

<Z>[++] = <Z>{

I N N

(24)

top-left quadr.
bottom-left quadr.

++

top-right quadr. |
bottom-right quadr.
(25)

For averages over products of z and x or y, the coordinate
shifts affect the values of the average because the shifting
itself contributes an additional term

o= ({0 §)2), + (o 5)2),,
+H{(o-2)2) +{(a+5)7). ). @0

The goal is, as before, to write the expression as a function
of the averages that were computed in the previous iteration,
during which the window size was (w/2). When doing so,
(XoZo1) is replaced with (xz>01 and so on because xg equals
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x of the previous iteration, and the subscript to the average
indicates that it is a previous iteration average. Constant
factors are also pulled out of the averages, e.g., ((w/4)z>Ol =
(w/4)<z>01. Averages over sums are broken up into the sums
of averages

(x2) = 7 (2} + (x2)10 + (x2)gy + (42,
H2 (2o + (D~ @~ (@) @D

Some of the quadrant averages of z now appear with a negative
sign. The notation that was introduced in (25) will now be used
to keep track of the signs

w
(x2) = (2) iy + 7 @)y

The linear term (xz) ++ Is the sum of all four terms linear in

++1

x from the previous iteration. The constant term (z> . is the

difference between the averages of the constant terms with
positive x ((z),, and (z),,) and with negative x ((z),, and
(Z>01)- Equivalent statements hold for (yz), and the difference
is correspondingly taken between values with positive and
negative y values

(28)

(¥2) = 3 ((¥2)gq + (V2o + (¥2)5y + (Y2
7 (Do + (D~ (2o = (2)10))
= 2+ 7@y (29)

Averages of terms that are quadratic in the coordinates are
evaluated similarly

)= (0= 25+ ((a2)'2)
(o 2y2), +{(u2)5), )

2

w w
2N _ 2 w “’_2 31
V'2) = YD)+ 502+ 5@ 6D

Notice that these quadratic terms involve differences between
quadrants of linear terms (xz> s+, much as the linear terms
involved differences between Hﬂadrants of constant terms
(z> -+ . However, these terms do not have to be stored beyond
the iteration in which they are used to compute the fit
parameters. Only the complete window averages (z), (Xz),
(yz), (x?z), (y?z), and (xyz) are used in the next iteration.

The term (xyz) furthermore includes differences of
quadrant-level (xz) averages in the y-direction and corre-
sponding (yz) differences in the x-direction, as well as a
term in which off-diagonal (z) aggregates are subtracted from
diagonal ones

02) = (o ) -
e )
Hlo- 3+ 2)2),,
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Fig. 6.  Schematic showing the cancellation of terms when subtracting
neighboring 8 x 8 pixel windows.

Hlar g+ 3)2),,)

w
= 092+ 709
2
w w
T2Vt 5@y

(xz> __ can be viewed as the difference between the linear
dependéﬁlce of z on x in the quadrants with positive y and the
quadrants with negative y. (z> i+ IS a combination of constant
terms for which the sign is that of the product of the signs of
x and y. This concludes the derivation of equations that were
outlined in Fig. 3.

(32)

E. Comparison With Two-Step Process

It may be tempting to think that computing curvature over a
smoothed surface alone should itself resolve problems of noise
adequately. Unfortunately, a two-step process has important
limitations. Consider the schematic in Fig. 6, which shows
two 8 x 8 windows that are one raster point apart, with the
left window shown in yellow and the right one in blue. The
area that is covered by both windows is shown in green.

If the values in the yellow window are subtracted from those
in the blue window, only the narrow yellow and the blue strips
on the left and right side contribute to the difference. The
values in the green region cancel and do not contribute to the
difference at all. This also means that if the data are noisy,
the averaging over the noise only happens within the narrow
yellow and blue strips.

This schematic oversimplifies the difference-taking to
involve no more than 2 pixels. In the actual two-step approach
of using smoothing followed by a 3 x 3 window curvature
computation, there would be two rows of raster points on each
side contributing. However, the general problem remains that
points other than those at the periphery cancel and do not
contribute to the overall curvature computation. The smoothing
that worked well for the landscape itself is partially undone
in the curvature computation.

That problem does not apply to the proposed window-
aggregation algorithm, which averages gradients over all rele-
vant points and is equivalent to a standard quadratic fit over the
window in question. As such, the averaging of errors extends
to all points in the window. The difference will be visible in the
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evaluation, where it will be seen that the window-aggregation
algorithm is less prone to noise than the conventional two-step
analysis.

F. Analytically Computed Ground Truth

For remotely sensed DEM data, there is no “correct”
slope or curvature available that could serve as ground truth.
A dataset was therefore constructed that allows for an ana-
lytical evaluation of curvature measures while offering some
diversity in observable features. As such, the model had to be
twice differentiable throughout the region, and the formulas
for all derivatives had to be encoded in the implementation.
This requirement made it highly impractical to use functions
that are defined over segments.

A common model for a spatial structure that is differentiable
arbitrarily many times and can be represented in arbitrarily
many dimensions, while being bounded and decreasing toward
the edges of any region that contains it, is the Gaussian
function e~ **+¥)/2* |ts convenient properties make it a go-to
function in most physical disciplines, including geosciences.
However, in this basic form, the model only allows for a very
limited set of curvature combinations. However, the convenient
properties of the Gaussian function apply even in superpo-
sition. In other words, all necessary derivatives could be
encoded in a parameterized fashion, and analytical derivatives
computed, even when the individual hills themselves may no
longer be distinguishable to the observer.

The resulting model still has the problem that it does not
account for noisy and nondifferentiable scenarios in the real
world. When adding a noise model, it had to be established
that the analytic derivatives could be expected to continue
holding. For this reason, the simplest noise model was used
of individually adding random numbers that follow a normal
distribution. With this noise model, derivatives are no longer
strictly the same as in the noise-free model, but it can be
expected that the noise cancels increasingly well for increasing
window sizes in any form of window-based smoothing.

Notice that the slope and curvature values represent
point-based slopes and curvatures, while the proposed algo-
rithm returns slopes and curvatures overextended and poten-
tially large windows. Differences between both are expected
and can indeed be seen in the evaluation. One could consider
applying window-based integration to the ground truth, but
attempting to do so would raise more questions than it would
answer. One question is whether second derivatives or geo-
metric curvatures should be integrated. Both definitions would
raise concerns, either related to the computation or to the role
as ground truth.

Instead, window-based slopes and curvatures are viewed as
approximates to the point-based slopes and curvatures for the
specific context of the artificially generated landscapes. In this
viewpoint, the window-based computation serves the purpose
of eliminating high-frequency noise, and any change to the
slope and curvature determination for the landscape is viewed
as error. This “error” increases with increasing window size,
as shown in Fig. 14 for a window size of w = 32. What may
be most surprising is that, despite this expected difference, and
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for large enough noise, increasing window sizes can still result
in decreasing error. These findings will be discussed in more
detail in Section I1V-A.

The definition of the artificial landscape is given as follows:

Ko )+ (=n)?
foy)y=> e (33)
i=0

where K is the number of peaks, g; is the width of peak i, and
wi and v; are the coordinates of the center of peak i. In the
experiments, the number of peaks, K, was 10, o varied from
10% to 30% of the image size, and x and v were randomly
selected within the image.

The partial derivatives of this function can be taken analyt-
ically. Since the window size is not taken into consideration,
it is to be expected that the analytical values would be poor
approximations when the window size is comparable to o.
In the evaluation, the largest window size was 64, and ¢ was
chosen to be as small as 10% of the image size of 512, so some
level of inaccuracy is expected. The partial derivatives of the
above artificial landscape are given as follows:

K x—pui )2 Y
oy _ -y e
00X — Uiz
K X—pi )2 )2
ofeey) _ -y y = O
oy — Giz
?f(x,y) EK: (X — i) —Uize*m%ﬂﬁ
o - i=0 ai'
oy° i=0 ai'
2H(K,Y) o (X — i) (y —vy) - Lol
Toxoy Z ——— € i . (34)
0Xoy o

i=0 !
The topographic functions are computed from the deriva-
tives as given in (7).

I11. IMPLEMENTATION
A. Array-Based Implementation

The implementation was done in Python using the
array-based processing capabilities of NumPy. It is available
on Github at https://github.com/amdenton/SlidingWindows

For performing the aggregation, four copies of the arrays
that hold the raster image, corresponding to each of the
quadrants, are “flattened”, i.e., treated as a 1-D array. The four
quadrants are treated as columns in a temporary array. Each of
the columns represents a shifted version of the aggregate raster.
Aggregation is then performed in the row direction of the
temporary array. Aggregates that correspond to points outside
the frame of (M —w+1) x (N —w + 1) meaningful windows
are deleted.

Fig. 7 shows the concept. The input raster contains results
from an aggregation of 2 x 2 windows and is shown on
the left-hand side. Four copies of the flattened version of
this raster are shown on the right-hand side, each with a
different offset. The first one has an offset of 0, corresponding
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Fig. 7. Schematic of the array-based implementation of the raster aggregation
step from w = 2 to w = 4. The example corresponds to an image size of
N = 6 and M = 6, which was reduced to a 5 x 5 raster at w = 2 and is
further reduced to a 3 x 3 output at window size w = 4.

to the top-left raster point. The second has an offset of
o0 = 2, representing the values from the top-right quadrant.
The aggregate value representing the bottom-left quadrant is
stored o = 2 rows below the first raster point. In the flattened
raster, this corresponds to a shift of M % J, where M is the
overall width of the DEM. For the tiny example of an image
that is only five raster points wide, this shift is 10, and hence,
the third copy of the flattened input raster is shown with an
offset of 10. The final copy corresponds to the bottom-right
quadrant and has a shift of M x4+ 6 = 12.

It would be straightforward to implement the approach for
use on a graphical processing unit (GPU) and easier than
implementing multipoint algorithms such as Wu et al. [62]
did. From a processing perspective, the proposed algorithm
makes heavy use of basic operations on large arrays and can
therefore be optimized relatively easily.

B. IART Algorithm

The pseudocode for the proposed IART algorithm is
depicted in Algorithm 1. In addition to the basic structure
that was shown in Fig. 3, more detail was added to flesh out
steps that were derived in Section Il. The algorithm has two
main parts. The aggregation step in procedure AGGREGATE
progressively aggregates the rasters representing (z), (xz),
(yz), (x?z), (y?z), and (xyz), in each step doubling the
window size. The procedure CURVATURES uses the aggregates
to compute curvatures.

The (z) raster is initialized to the original DEM in procedure
INITIALIZE. The initialization corresponds to a window size
of w = 1. At that window size, all rasters correspond to an
average over a single value with x = 0 and y = 0, within
the coordinate system that is centered on that value. Hence,
all aggregates other than (z) are initialized to 0, implying that
the entire representation of spatial coordinates stems from the
shift in the coordinate systems upon aggregation of the four
quadrants from the previous iteration. In the first aggregation
step, which has an output window size of w = 2, the shift
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Algorithm 1 Curvature Using Iterative Aggregation
1: procedure INITIALIZE

2 aggs <0

3 Z < import_dem()

4 XZ,YZ,XXZ, Yyz, Xyz < zeros(size(z))

5: return aggs, z, Xz, Yz, XXz, Yyz, Xxyz

6: procedure AGGREGATE(aggs, z, XZ, Yz, XXZ, YYZ, Xyz)
7

8

9

w = 2399s

Znew < add_all(z) > See eqn. (24)
© XZpew < add_all(x2)

10:  +4w/4 % add right(z)

11:  YZnew < add_all(y2)

12:  +w/4 * add_bottom(z) > See eqn. (29)

13: XXZpew < add_all(xx2) + w/2 * add_right(x2)

14:  +w?/16 x add_all(z) > See eqn. (30)

15:  YYZpew < add_all(yyz) + w/2 % add_bottom(yz)

16:  +w?/16 x add_all(z) > See eqn. (31)

17:  XYZney < add_all(xy2)

18:  +w/4 % add_bottom(xz) 4+ w/4 x add_right(yz)

19:  4w?/16 = add_diag(z) > See eqn. (32)

20 aggs=aggs—+1

21: return aggs, Znew, XZnews YZnew> XXZnews YYZnews XYZnew

22: procedure CURVATURES(aggs, z, Xz, Yz, XXz, yyz, XyZ)

23w = 239%

24: XX = (w?—1)/12

25 xmult = (w* — 5% w? +4)/180

26: p = XZ/XX

27 g = yz/XX

28: = 2% (XXZ— (XX % 2))/xmult

29: S = XYz/(XX % XX)

30 t=2x%(yyz— (XX * 2))/xmult

31 > For the derivation of p,q,r,s, and t see egns. (15)

32:  dope=arctan(y/p? + g?)

33 d0=(p?+ g% x+/1x p2+q23

34:  profile= —(p?*r +2% pxQgxS+qg°*t)/d0

3:  dl=(p?+ g% * /1% p>+q?

3: tangential = —(Q® *r — 2% px QxS+ p? xt)/dl

37 > From literature, see eqns. (7)
38: return slope, profile, tangential

39: procedure MAIN(file_name max_aggs)

40: > Input: DEM file name, max number of aggregations
41 aggs, Z, Xz, Yz, XXz, yyz, Xyz < INITIALIZE()

42:  while aggs <= max_aggs do

> See eqn. (28)

> See eqn. (18)
> See eqn. (22)

43; aggs, z, Xz, Yz, XXz, Yyz, Xyz <

44: AGGREGATE(aggs, z, Xz, Yz, XXz, Yyz, Xyz)

45: if aggs > 1 then

46: > Curvature requires at least 2 aggregations
4T: slope, profile, tangential <

48: CURVATURES(a9gs, z, Xz, Yz, XXz, YyZz, XyZz)

49: Output(aggs, slope, profile, tangential)

covers a distance of (w/4) = (1/2). Later aggregations shift
the coordinate systems by integer values that are powers of 2.

In this pseudocode, curvatures are computed for each aggre-
gation step, i.e., profile and tangential curvature rasters are
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Fig. 8. (Top Left) Artificial dataset consisting of ten Gaussian hills of
height 100. (Top Right) Slope of that dataset. (Bottom Left) Profile curvature.
(Bottom Right) Tangential curvature. The sign conventions are given as
in [13].

output for all window sizes that are powers of 2 up to the
largest one. If only the curvatures for the largest window size
were of interest, the procedure CURVATURES would only have
to be called once at the end. As presented, all intermediate
curvatures are returned, as is appropriate when a multiscalar
analysis is of interest. For simplicity, the pseudocode also
includes the slope computation among the curvatures rather
than as a faster limited-purpose slope function.

1V. EXPERIMENTS
A. Evaluation on Artificial Data

As a first test, the IART algorithm is applied to an artificially
created landscape as described in Section I1-F. Specifically, ten
Gaussian hills were created with randomly selected centers and
widths chosen randomly within a range of 10%-30% of the
image size. The height is chosen to be 100 m for each hill,
assuming a raster size of 1 m. The intention of using such
a large height is to detect problems more effectively. For the
sake of reproducibility, the same seed (1) was used for the
entire evaluation. Table Il shows the values for the centers (u
and v) and widths of the Gaussian hills (o) as a fraction of
the image size.

Fig. 8 shows the resulting image in the top-left corner.
Some of the peaks can be seen individually, and some merge
and create ridges, such as one toward the left of the image.
Moreover, troughs can be seen around some of the hills, such
as for a hill in the bottom-right corner. The top-right panel
shows the slope of the landscape, as calculated by (34). The
tops of the Gaussian hills have zero slope, as expected. There
is also a ridge toward the left that shows a negligible slope.
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TABLE I

CENTERS AND WIDTH OF GAUSSIAN HILLS USED AS
ARTIFICIAL DATASET

[Index [ [v Jo |
0 0.72 | 042 | 0.10
1 0.15 | 030 | 0.12
2 035 | 0.19 | 0.18
3 042 | 054 | 0.24
4 0.88 | 0.20 | 0.11
5 042 | 0.67 | 0.21
6 0.20 | 0.14 | 0.26
7 031 | 097 | 0.24
8 0.89 | 0.88 | 0.12
9 0.17 | 0.04 | 0.28

The largest slopes can be seen near a tall hill in the top-left
corner, which is a superposition of primarily the four out of ten
hills that are located in the top-left quadrant in the landscape.

The bottom-left panel shows the profile curvature. It is
largest for steep hills with small &, except where those hills
show ridges in the direction of other hills. The ridge toward
the left shows small profile curvature specifically on the top
portion, where the slope is directed along the ridge. The tan-
gential curvature in the bottom-right panel, in contrast, is large
around those ridges and smallest in the troughs around hills
that are at the base level of the landscape and hence largely
constant perpendicular to the slope. Note that all curvatures are
positive when downward, see (8), following the mathematical
definition that is used in the article by Florinsky [13], but not
of the ArcGIS software, which uses a positive sign for upward
profile curvature.

When processing this image with a sliding window of
increasing sizes up to 64 x 64, without added noise, with
either the proposed IART algorithm or ArcGIS, there were no
obvious changes even for the largest window sizes. This is to
be expected since the Gaussian nature of the landscape makes
it relatively smooth in comparison with what one may find in
a real landscape. The widths of the Gaussian hills was selected
such that the window size would rarely exceed o.

The analytically calculated topographic variables were then
compared with their numerically computed counterparts and
evaluated using the MAPE, as shown in Fig. 9. For the
evaluation using ArcGIS, the sign was adjusted to match
the theoretical definitions, which meant reversing the sign
of the profile curvature. For window sizes of w > 3, the
following processing was used. Focal statistics was used with
a square window of the size wi = w — 2 followed by the
conventional curvature computations using a 3 x 3 window.
Since both processing types amount to a convolution, this
approach results, in total, in effective windows of w x w raster
points. Since the periphery of the resulting image were highly
distorted, a w/2 frame was removed such that the comparison
with the IART algorithm, for which the frame is removed as
part of the process, would be fair.

For slope, there is relatively little difference between the
theoretical and actual values (the top of Fig. 9) until the largest
window size of 64 x 64. Since the w = 64 is greater than
some of the o values of hills, which can be as small as 10% of
the 512 image size or 51 raster points, substantial differences
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Fig. 9. MAPE in comparison with theoretical values for the artificial data

with no noise, for the IART algorithm (red crosses), and ArcGIS (blue
circles). Variables of interest: (Top row) slope, (second row) profile curvature,
and (Bottom row) tangential curvature. For ArcGIS the processing includes
smoothing (for window sizes >=8) followed by (Top row) slope, (second
row) profile, and (Bottom row) planform curvature computation.
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Fig. 10. R? in comparison with theoretical values for the artificial data

with noise for the IART algorithm (red crosses) and ArcGIS (blue circles).
Variables of interest: (Top row) slope, (second row) profile curvature, and
(Bottom row) tangential curvature. For ArcGIS the processing includes
smoothing (for window sizes >=8) followed by (Top row) slope, (second
row) profile, and (Bottom row) planform curvature computation.

are expected and can be seen. For profile curvature (second
panel), the differences in comparison with the theoretical
values are higher, but still only major at the largest window
size.

The comparisons so far do not provide evidence for benefits
of using large window size since, in all cases, accuracy
declined with increasing window size. The situation changes
when random noise of up to 10% of the maximum height of
the hill is added. In fact, when doing so, the MAPE became so
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Fig. 11.  (Left) Slope, (Middle) profile curvature, and (right) tangential

curvature using the IART algorithm on artificial data with noise, for window
sizes from top to bottom: w = 4, 8, 16, 32, and 64.

large throughout the experiment that it was no longer a useful
measure of estimation quality.

Instead, the R? value was used, as can be seen in Fig. 10.
Note that, in contrast to MAPE, a large value is now desirable.
R? values for all algorithms suggest that the results are largely
useless for the smallest window sizes, which are 3 x 3 in the
case of ArcGIS and 4 x 4 in the case of the IART algorithm.
Because the noise was added at the level of individual raster
points, the topographic features that can be attributed to the
noise overwhelm the underlying artificial landscape. For larger
window sizes, slope has good R? values for both ArcGIS
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Fig. 12.  (Left) Slope, (Middle) profile curvature, and (Right) planform

curvature using ArcGIS on artificial data with noise for effective window
sizes from top to bottom 3 (no smoothing), 8, 16, 32, and 64, i.e., smoothing
using focal statistics with window sizes 6, 14, 30, and 62, respectively (see
the text).

and the IART algorithm, but curvature is still problematic.
Curvature remains problematic for both ArcGIS and the IART
algorithm for a window size of 8 x 8.

When the curvature is computed over windows of size
16 x 16 and larger, the IART algorithm has reasonably high
R? values even in this noisy setting. Yet, ArcGIS curvatures
are still not very useful, despite the substantial smoothing of
larger window sizes. For the largest window sizes (32 x 32 and
64 x 64), R? for the IART algorithm is very close to 1. This
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Fig. 13. Difference between numerical and theoretical curvatures for w =
16 using artificial data with noise. The output is normalized to the range
between the 10th and 90th percentiles of occurring values.

is the case although the theoretical slope and curvatures do not
account for the window size at all. In other words, the benefits
due to the averaging over noisy data points are overwhelmingly
more important than any drawbacks due to the theoretically
poorer match. This is the case even for ArcGIS, although
the ArcGIS results do not approach R? = 1 until the largest
window size of 64 x 64 and are lower than the results of the
IART algorithm even then.

The differences in quality between the IART output and
ArcGIS’s curvature results can be seen in Figs. 11 and 12.
The figures show slope (left), profile (middle), and plan (right)
for increased window sizes from top to bottom. While slope
is acceptable for all but the unsmoothed image, curvatures
do not become clear until the lower rows of the images.
In Fig. 11, it can be seen that the IART algorithm produces
the characteristic features with clarity for window sizes w =
32 and w = 64, and even the results for a 16 x 16 window
provide the detailed output albeit with some noise. The ArcGIS
output is much noisier in comparison.

Note that the images are normalized to the maximum and
the minimum of the range of occurring numbers. The consis-
tently much larger ranges of the ArcGIS values are indicators
of the much more substantial noise in those images. Even
when it may be possible to detect the features of the underlying
image visually, any computational downstream analysis would
suffer from that noise. For example, for window size w = 32,
the curvatures can be discerned even in the ArcGIS output,
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Fig. 14. Difference between numerical and theoretical curvatures for w =
32 using artificial data with noise. The output is normalized to the range
between the 10th and 90th percentiles of occurring values.

but the displayed range of values is more than twice that of
the IART output. Those large random values would negatively
affect any further processing.

Fig. 13 shows the differences between window-based and
ground-truth results at the level of individual raster points, for
a window size of w = 16. This visualization allows analyzing
the differences between the numerical and theoretical curva-
tures in more detail. It can be seen that the noise is dominating
both the result of the proposed IART algorithm and the ArcGIS
comparison approach. However, the range of the IART output
is smaller by about a factor of 5. The ArcGIS output shows
such rapid fluctuations that they can be barely distinguished.
Note that the fluctuations are largely horizontal and vertical,
which matches the theoretical considerations in Section |I-E.
When applying curvature computations on smoothed images,
curvature is effectively computed as differences between one-
or two-pixel columns and rows. The horizontal and vertical
streaks in the output are tell-tale signs that noise fluctuations
are averaged in a predominantly vertical or horizontal fashion,
but not in a way that uses the entire window.

One might consider increasing the window size yet further
to achieve more smoothing, but doing so creates inaccuracies
that cannot be prevented because a larger region in the image
is summarized with each window. To test the effect of
inaccuracies due to large window sizes, the analysis from
Fig. 13 was repeated for a window size of 32 x 32. The

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on July 10,2023 at 00:14:40 UTC from IEEE Xplore. Restrictions apply.



DENTON et al.: LARGE-WINDOW CURVATURE COMPUTATIONS FOR DEMs

486.2

I 5285

Fig. 15. 500 x 500 DEM showing a tributary to the Souris River in Ward
County North Dakota.

output can be seen in Fig. 14. First, it can be noted that for
both algorithms, the errors are reduced, although they are more
substantially reduced for the IART algorithm than for ArcGIS,
and the ArcGIS output at window size 32 x 32 is noisier than
the 1IART output for window size 16 x 16. Second, while
the random noise is still substantial for ArcGIS, the size of
the smoothing window is already creating distortions that are
noticeable as errors. Distortions are a mathematically quan-
tifiable consequence of window size and cannot be avoided in
either approach, but when the noise reduction goals of window
smoothing have effectively succeeded at the w = 32 window
size for 1ART, the ArcGIS errors are still very large. Notice
that the scale of the ArcGIS errors is a full order of magnitude
larger than that of IART errors. As such, the IART algorithm
is far more effective at accomplishing the goals of window
smoothing toward noise reduction.

B. Evaluation on DEM Data

The evaluation on real elevation data uses a DEM of size
500 x 500 with 1-m resolution from a tributary to the Souris
River in Ward County, North Dakota. These data come from
QA Program for High Resolution Lidar Data for Multiple
Counties in North Dakota, Phase 7, and specifically from the
Ward County block [63]. The data were collected in 2017 and
published in February 2018. It has 1-m spatial resolution and
was collected to have 0.1-m vertical accuracy. The DEM is
in NAD83 _UTM_zone_14N projection (easting 314800 and
northing 5359750) The DEM itself can be seen in Fig. 15.

Fig. 16 shows the result of processing with the IART
algorithm, following the same steps as in Section 1V-A, except
that the ground truth for this landscape is unknown. As pre-
viously, the results in the top row, which correspond to a
w = 4 window size, show a substantial level of noise. This
noise can also be observed quantitatively from the large range
in which both profile and tangential curvature are observed.

3000620

For increasing window sizes, details become increasingly
clearer and the range of curvatures decreases. At window
size w = 16, in the third row, substantial detail about the
water systems in this area can be identified. The profile image
provides information along the flow direction into the water
systems, while the tangential image elucidates many additional
tiny ridges and creeks perpendicular to the slope, which,
respectively, disperse or condense the flows. The next larger
window sizes of w = 32 removes yet more noise while still
preserving much of the detail, which promises to be useful
in further analyses. For this elevation model, the result of
processing with window size w = 64 starts losing detail and
may be most suited if a broad overview is intended. It can
also be seen that, at this level, the bottom of the largest river
shows swapping of gray shades between profile and tangential
curvature. This is to be expected because the flow points
toward the river in most of the river bed except at the center
of the river itself, where the flow points along the river path.
Overall, the loss of detail in the bottom is such that most
practitioners would likely prefer a smaller window size given
the resolution of the DEM. Note, however, that this is a 1-m
DEM, and larger window sizes are bound to be useful for
DEMs of yet higher resolution.

Fig. 17 shows the corresponding results of processing in
ArcGIS. In the top row, slope is the only analysis type
that is useful. Key features of the water system are barely
visible in the profile and planform processing. In the second
row, which corresponds to an effective w = 8 window size
(smoothing with a 6 x 6 window, followed by application of
the 3 x 3 window for the curvature computation), the slope
representation becomes more pronounced and the profile and
planform emerge. Residual noise levels are not as problematic
for these data for window sizes for w = 8 and higher as for
the artificial data since these are high-quality data with high
vertical resolution. However, the results still show pronounced
oscillations in the East-West and North—South directions,
which are consistent with the discussion in Section II-E and
the observations in Fig. 13.

For the DEM data, it is not possible to subtract a ground
truth for visualizing errors on a per-raster-point basis as for
artificial data. With no ground truth available, it is harder
to confirm which curvatures are correct. However, there is
no reason to assume that this region should have predomi-
nantly East-West and North—-South curvature oscillations. The
processing using the IART algorithm does not show any such
distortions.

C. Performance

For the performance analysis, a much larger raster of
size 5000 x 5000 was used. The processing was done a
Dell Mobile Precision 5560 Processor 11th Gen Intel Core
i5-11500H @ 2.90GHz with 16.0-GB RAM. While the system
has a NVIDIA T1200 w/4AGB GPU, the IART code is not
implemented to use it. Although ArcGIS can in principle
make use of GPU processing, this feature was not used in
the evaluation.
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Fig. 16.  (Left) Slope, (Middle) profile curvature, and (Right) tangential
curvature using the IART algorithm on artificial data with noise, for window
sizes (top to bottom) w = 4, 8, 16, 32, 64.

Fig. 18 shows the contributions to the two types of process-
ing. The largest contributions for both approaches come from
the aggregation and focal statistics. The slope and curvature
computations are comparatively fast and do not depend on
window size. Since profile and tangential/planform require
very similar processing times, the two were not distinguished
in this figure.

Whether the ArcGIS focal statistics or the IART aggregation
is faster and scales more favorably depends to some extent
on how they are used. If output at all powers of two of
window size is desired, the IART algorithm has constant
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Fig. 17. (Left) Slope, (Middle) profile curvature, and (Right) plan curvature
using ArcGIS on the landscape from Fig. 15, for effective window sizes top
to bottom 3 (no smoothing), 8, 16, 32, 64 (see Section I1V-A).

scaling (black line, triangles up) since each aggregation builds
on the previous one. Notice also that these iterations have
approximately the same runtime regardless of the level of
aggregation. In other words, the shift by 6 = w/2 raster
points that was discussed in Section Il does not affect the run-
time negatively. ArcGIS does not offer any such incremental
processing. For ArcGIS, the focal statistics (red line, circles)
has to be computed from scratch for each window size, and
this computation takes longer for window sizes 32 and 64.

If the IART processing is to be done to the final size without
employing intermediate aggregation steps, the intermediate
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Fig. 18. Aggregation and slope/curvature computation contributions to the
runtime for the IART and ArcGIS code for a 5000 x 5000 raster image. See
the text for possible combinations.

results are still needed and have to be computed. The resulting
processing time is logarithmic in the size of the window, which
appears linear in Fig. 18 with its logarithmic x-axis. The IART
code was not optimized for this use case, but new memory was
allocated in each iteration such that intermediate copies could
be preserved. Even without optimizations, the Python-based
IART implementation is within the same runtime range as
ArcGIS and ArcGIS scale slightly worse. Note that the focal
statistics algorithm has to solve the same problem of inherently
quadratic scaling. ArcGIS has been optimized over decades
and clearly also avoids the quadratic cost.

One could entertain the thought of aggregating the regres-
sion terms > Xz, > yz, > xXz, >, yyz, and Y Xyz using
ArcGIS’s focal statistics tool, so as to gain the benefit of a
mathematically well-founded regression fit to the data and
avoid the approximations of their current two-step pipeline.
Such a hypothetical approach would amount to running their
focal statistics tool six times, once for > z and, in addition, for
each of the five regression terms > xz and so on (see dotted
line “Arc Hypothetical” in Fig. 18). This approach suffers from
a poorer scaling of the focal statistics tool. For window size
w = 64, running the focal statistics tool on all six regression
terms would amount to more than twice the runtime of the
IART algorithm. However, the benefit in comparison with
IART would be that arbitrary window shapes could be used.

Beyond the aggregations and focal statistics, slope and
curvature computations contribute to the final result. For the
IART algorithm, these take only about 1 s for the 5000 x
5000 image under consideration, which is substantially less
than the corresponding computations in ArcGIS. The reason
why this portion is faster in the IART algorithm is that
the aggregation steps already produce the sums and sums

TABLE Il

CoMBINED WHEN COMPUTING CURVATURES

Curvatures for all w
using IART

Add TART Agg. Incr. and
TIART Curvature for all w

Curvature for specific wo
using IART

Add TART Agg. and
TIART Curvature for wq

Curvature for specific wo
using ArcGIS

Add Arc Focal and
Arc Curvature for wo

Curvature for specific wo
using hypothetical approach

Add Arc Hypothetical and
TIART Curvature for wq
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EXAMPLE SCENARIOS OF HOW RUNTIME CONTRIBUTIONS ARE

of squares from which the regression coefficients can be
calculated directly without a need for further aggregations
across raster neighbors. In the ArcGIS approach, the focal
statistics step still leaves the need for slope and curvature
computations across 3 x 3 windows, which takes more than
twice as long.

Table 11l shows some example scenarios together with the
contributions that would have to be added to estimate the
computation time in each case:

In summary, it can be seen that even with an implementation
in Python, the overall performance is comparable to ArcGIS
for substantially improved output quality, as discussed in
Sections IV-A and IV-B. The scaling of the proposed IART
algorithm is fully logarithmic in window size, as expected
from theoretical considerations, and the output on every length
scale is produced as a byproduct of the aggregation process,
allowing multiscale analysis at very little additional cost.

V. CONCLUSION AND FUTURE WORK

An algorithm was presented for computing regression-based
curvatures over windows of sizes that can be arbitrarily large
powers of 2. The definition follows Evans’ original idea of
fitting quadratic functions to elevation points. Meanwhile, the
proposed algorithm avoids the need for encoding specific
window sizes that was inherent in previous approaches and
is, hence, suitable for modern high-resolution DEM data.
Limits to the window size were avoided through an iterative
aggregation approach, in which each iteration amounts to a
doubling of window size.

The algorithm was evaluated over artificial data that con-
sist of ten hills in the shape of Gaussian functions. Point-
based curvatures were computed analytically and used as
ground truth. Deviations between window-aggregation results
and the ground truth increased in the noise-free setting,
as would be expected. Even in that setting, the results of
the proposed window-aggregation algorithm were closer to
the ground truth than those of the comparison approach of
using ArcGIS’ focal statistics tool followed by conventional
curvature computations.

When random single-pixel noise was added, the match
between window-aggregation results and ground truth, as mea-
sured by the R? value, increased up to the largest window
size of 64 x 64 raster points. In other words, larger window
sizes consistently resulted in a closer approximation of the
analytical point-based curvatures than smaller ones, due to
the noise reduction associated with the averaging. These
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observations support the value of using larger windows than
is possible for typical versions of Evans’ regression-based
curvature specifications.

A two-step approach of first averaging elevation data
and then applying small-window curvature computations also
showed a reduction in noise with increasing window size, but
the quality was much poorer than for the proposed single-step
algorithm that computes regressions over windows directly.
This conclusion could be drawn both from a quantitative
analysis of the R?-values with respect to the ground truth
and also from an inspection of the difference between indi-
vidual raster points. While both the proposed, single-step
and the comparison, two-step algorithms show the predictable
differences between the window-level results and the point-
based curvatures, noise in the resulting curvature output
makes the comparison approach much less useful. Moreover,
in the comparison algorithm, the noise showed horizontal
and vertical streaks that are clear evidence of averages being
taken over only a small portion of the raster points in the
averaging windows. This behavior is expected because all but
edge values cancel when differences are taken between two
neighboring raster points, each of which represents an average
over a window.

The algorithm was furthermore evaluated on 1-m resolution
DEM data from the Souris River Basin in North Dakota. This
evaluation supports the notion that at such high resolution,
the results of curvature computations for small-window sizes
are dominated by noise and not useful. While curvatures for
window sizes of 4 x 4 barely show structure, interesting
features emerge when window sizes are increased. While
averaging also helps in the two-step comparison approach, the
results of the evaluation on real data suffer from the same
horizontal and vertical streaks as those in the evaluation on
artificial data, and they are of noticeably lower quality.

In summary, an approach was presented for computing
high-quality curvature rasters from high-resolution DEM data
and bypass approximations that are commonly made in this
process. While the approach has consistently higher quality
than existing ones, the computation time is comparable and
the implementation scales slightly better with window size.
Generalizing the principles of the proposed algorithm to any
of the topographic variables that rely on polynomial fits would
be straightforward, and even some other geomorphometric
variables satisfy the additivity criterion that underlies its
effectiveness. With the increase in availability of elevation
data, this work promises to become increasingly relevant for
addressing the important challenges of understanding surface
hydrology and erosion.
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