Delineating Nitrogen Management Zones in a Sugarbeet Rotation Using Remote Sensing - A Review

D.W. Franzen

North Dakota State University, Box 5758, Fargo, ND 58105

ABSTRACT
In 2002, twenty percent of the sugarbeet area in the Red River Valley of Minnesota and North Dakota was examined using satellite imagery for the purpose of modifying nitrogen (N) recommendations for subsequent crops. N was applied to sugarbeet (Beta vulgaris L.) after soil sampling in patterns delineated by previous satellite images. The use of this technology was based on over one hundred years of nitrogen research, and clever use of the principles established over generations of research combined with new capabilities in a computerized and space-age world. A review of the research basis for the use of satellite imagery to manage N in a sugarbeet rotation and the advancements made towards the use of this technology is presented. A recent survey of sugarbeet growers shows an economic advantage of $50 ha⁻¹ and $113 ha⁻¹ for grid sample-based and zone sample-based N rates to sugarbeet. Even with the large database which shows the agronomic and economic advantages of site-specific N application to sugarbeet, general adoption of the techniques is still years away.

Additional Key Words: nitrogen, satellite imagery, soil sampling, precision agriculture

Nitrogen (N) management is important for most crops due to its effect on yield, input costs, and environmental concerns. N management is important in sugarbeet production for these same reasons, and also due to its effect on root quality. Sugarbeet requires N early in the season for root development. Later in the season, excessive N leads to reduced sucrose concentration of roots and increased levels of impurities, including nitrate and ammonium compounds, which reduce
sucrose recovery at the refinery. Since 1973, growers in the Red River Valley have been paid on a formula which includes root yield delivered and extractable sucrose; sucrose content less loss to molasses.

The relationship between N, root yield and quality has been known for over one hundred years. The earliest examination of N effect on sugar beet quality in the US was reported in Colorado by Headden (1912). However, Headden refers to even earlier European reports. Winner (1993) mentions an experiment station established in Bernburg, Germany in 1882 to investigate mineral nutrition of sugar beet. Numerous studies have since been conducted to examine this relationship (Gardner and Robinson, 1942; Hill, 1946; Haddock, 1952; Hunter and Yungen, 1952; Schmehl et al., 1963 (Table 1); Baldwin and Stevenson, 1969; Boyd et al., 1970 (Table 2); Bauer and Cassel, 1972 (Table 3); Soine, 1973 (Table 4); Halvorson and Hartman, 1975).

Although in the middle of the twentieth century there was agreement regarding the effect of excessive N on the quality of sugar beet, there was disagreement about how to manage N application.

Table 1. The effect of N rates on sugar beet root yield, sucrose concentration and sucrose yield, Colorado (Schmehl et al., 1963).

<table>
<thead>
<tr>
<th>N Rate, kg ha(^{-1})</th>
<th>Root yield, Mg ha(^{-1})</th>
<th>Sucrose concentration, %</th>
<th>Sucrose yield, Mg ha(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>46.4</td>
<td>16.4</td>
<td>7.6</td>
</tr>
<tr>
<td>45</td>
<td>50.6</td>
<td>15.4</td>
<td>7.8</td>
</tr>
<tr>
<td>134</td>
<td>49.7</td>
<td>14.5</td>
<td>7.2</td>
</tr>
</tbody>
</table>

Table 2. Effect of nitrogen fertilizer on sucrose yield, United Kingdom (Boyd et al., 1970).

<table>
<thead>
<tr>
<th>N rate, kg ha(^{-1})</th>
<th>Sucrose yield, Mg ha(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.67</td>
</tr>
<tr>
<td>45</td>
<td>6.28</td>
</tr>
<tr>
<td>90</td>
<td>6.79</td>
</tr>
<tr>
<td>135</td>
<td>6.88</td>
</tr>
<tr>
<td>180</td>
<td>6.80</td>
</tr>
</tbody>
</table>

Table 3. Effect of N application over three sugar beet varieties on sugar beet root yield, sucrose concentration, impurity index and sucrose yield, Oakes, ND (Bauer and Cassel, 1972).

<table>
<thead>
<tr>
<th>N Rate kg ha(^{-1})</th>
<th>Root yield, kg ha(^{-1})</th>
<th>Sucrose concentration, %</th>
<th>Sucrose yield, Mg ha(^{-1})</th>
<th>Impurity index, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>48.8</td>
<td>17.0</td>
<td>8.3</td>
<td>429</td>
</tr>
<tr>
<td>56</td>
<td>50.0</td>
<td>16.7</td>
<td>8.3</td>
<td>482</td>
</tr>
<tr>
<td>112</td>
<td>54.0</td>
<td>16.4</td>
<td>8.9</td>
<td>534</td>
</tr>
<tr>
<td>224</td>
<td>55.1</td>
<td>15.3</td>
<td>8.4</td>
<td>750</td>
</tr>
</tbody>
</table>

Initial soil nitrate-N to 60 cm was 56 kg ha\(^{-1}\)

Table 4. Effect of preplant N application on sugar beet root yield, sucrose content and sucrose yield, Hillsboro, ND (Soine, 1972).

<table>
<thead>
<tr>
<th>N Rate, kg ha(^{-1})</th>
<th>Root yield, Mg ha(^{-1})</th>
<th>Sucrose concentration, %</th>
<th>Sucrose yield, Mg ha(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>32.9</td>
<td>16.2</td>
<td>5.3</td>
</tr>
<tr>
<td>56</td>
<td>38.1</td>
<td>16.0</td>
<td>6.1</td>
</tr>
<tr>
<td>112</td>
<td>40.3</td>
<td>15.1</td>
<td>6.1</td>
</tr>
<tr>
<td>224</td>
<td>41.7</td>
<td>14.0</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Initial residual nitrate-N to 60 cm was 50 kg ha\(^{-1}\)

Until the mid-1960's, it was believed that measurement of soil nitrate had little relationship with N availability to crops (Scarsbrook, 1965). However, Soper and Huang (1963) demonstrated that root zone nitrate levels were good indicators of the N needs of spring barley. By 1971, North Dakota State University was basing N fertilizer recommendations on residual fall soil nitrate testing (Torkelson, 1972). Subsequent studies confirmed the value of nitrate soil testing in many regions (James, 1971; James et al., 1971; Reuss and Rao, 1971; Roberts et al., 1972; Carter et al., 1975; Giles et al., 1975; Hills and Ulrich, 1976), so that by 1980, Moraghan states "soil testing, involving the determination of nitrate-N in the 0-2 foot soil zone, is widely practiced in the Red River Valley to estimate rates of application of N fertilizer." A number of studies that also included 60-120 cm nitrate-N determinations (Anderson et al., 1972; Rudolph et al., 1980) prompted a revision of recommendations to include the deeper
N as an adjustment (Cattanach and Dahnke, 1981). Subsequent studies (Moraghan, 1982, 1984, 1985, Franzen et al., 1999; Franzen et al., 2002) confirmed the importance of identifying fields with high soil nitrate-N levels below 60 cm.

Croppin and Rixhon (1967) conducted a four year rotation study in France where sugar beet tops were analyzed for N, incorporated into the soil, and a series of crops were grown in the following years. They concluded that the sugar beet tops contributed 35-40 kg ha\(^{-1}\) N the year after incorporation. Draycott (1972) cited a similar study by Widdowson (1971, personal communication to Draycott) that indicated a N value of sugar beet tops to a subsequent barley crop of about 20 kg ha\(^{-1}\). Abshii et al. (1984) conducted N tracer studies and determined that sugar beet tops were directly contributing N to the subsequent crop. Moraghan and Anath (1985) noted that soil nitrate-N in the 0-15 cm depth was elevated, while deeper depths were depressed the year following a sugar beet crop, suggesting that sugar beet tops were being mineralized.

Once N requirements for maximum sugar beet root growth are achieved, additional N increases top growth (Lamb and Moraghan, 1993). Moraghan and Echevers (1975) referred to sugar beet tops at one experimental site as having potential as an “excellent green manure crop” due to its high N content. Moraghan and Cattanach (1986) referred to sugar beet canopies as “green” areas and “yellow” areas within fields, and observed heterogeneity of soil nitrate-N levels within sugar beet fields corresponding to leaf color.

Moraghan and Smith (1994) began to make distinctions between sugar beet tops with small or large amounts of N and the N benefits to subsequent crops. Sugar beet tops with large amounts of N (7,600 kg ha\(^{-1}\) top weight containing 299 kg ha\(^{-1}\) N) resulted in wheat grain yields similar to a 132 kg ha\(^{-1}\) N fertilizer application. Sugar beet tops with smaller amounts of N (4760 kg ha\(^{-1}\) top weight and 72 kg ha\(^{-1}\) N) resulted in a grain yield increase, equivalent to the grain yield increased by an application of about 45 kg ha\(^{-1}\) N fertilizer. The experiment was repeated (Moraghan and Smith, 1995a) with similar results. It was also reported (Moraghan and Smith, 1995b) that N was released from residues by mid-May, following fall incorporation of sugar beet tops. This work was summarized in Moraghan and Smith (1996).

Smith (1996, 1997) conducted site-specific N application studies with sugar beet in the rotation. When N fertilizer recommendations for crops following sugar beet were based only on soil nitrate levels, variability patterns of soil N levels and soil nitrate-N content was similar at the end of the rotation to those found when the study began. He suggested that sugar beet top N content should be considered to prevent excessive N application within the rotation.

Satellite imagery was used to distinguish between “high-N” and “low-N” tops in commercial fields (Moraghan and Horsager, 1996). Three reflectance bands (530-590 nm, 600-680 nm, and 780-890 nm) were used to form the image. The spatial resolution (30 m) of the satellite images prevented identification of some ground truthed features. The authors suggested that sampling based on topography differences might improve the field information.

Moraghan et al. (1997) separated sugar beet canopy color from images obtained from late August through early October into yellow, yellow-green, and green. Both aerial photography and satellite imagery were used to detect these canopy color differences at the twelve “green” sites, eight “yellow-green” sites and six “yellow” sites in six fields. Subsequent testing of the technique within grower fields (Moraghan, 1998; Moraghan, 1999, Sims et al., 2002) indicated that providing N credits to “green” sugar beet tops was practical.

Franzen et al. (1999, 2000) used NDVI imagery from the Landsat 5 satellite to delineate zones for applying sugar beet top credits against N recommendations for wheat. NDVI is an acronym for Normalized Differential Vegetative Index, which is the ratio of the reflectance of infrared minus red light, divided by infrared plus red light. NDVI is related to relative biomass, crop type, plant health and nutrition. Yields of areas where credits were given were similar to yields in areas where credits were not needed. Careful attention to N application rates to crops within the rotation, directed by soil sampling, application of N, and sugar beet top N credits within these image-based zones, resulted in improved sugar beet quality.

In 2002, approximately 40,000 ha (about 20% of the 2002 sugar beet acreage in the Red River Valley) of crops immediately following sugar beet were given a credit based on this research, with a reduction in fertilizer costs of about $20 ha\(^{-1}\). Other benefits included reduced lodging of small grains and lower residual N levels in fields returning to sugar beet in two to three years.

The sugar beet cooperatives purchase NDVI imagery (Landsat 5) of the entire Red River Valley during August and September. In some years, clouds obscure some areas, but in most years at least one image is available for use. Agriculturalists with the sugar cooperatives and private consultants help growers create application maps from the imagery, using the research described previously. Growers pay a small fee (about $4.50 ha\(^{-1}\)) for this service. After an image is created, a field within the image is scouted to identify green and yellow areas as compared to higher and lower vigor canopies as shown in the NDVI image.
Table 5. Comparison of correlation coefficients between NDVI readings of sugar beet canopy and the product of NDVI multiplied by canopy height for canopy dry matter, canopy N content, and total N.

<table>
<thead>
<tr>
<th>Comparison</th>
<th>NDVI</th>
<th>NDVI x Canopy height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter</td>
<td>0.395</td>
<td>0.692</td>
</tr>
<tr>
<td>N concentration</td>
<td>0.546</td>
<td>0.811</td>
</tr>
<tr>
<td>Total N</td>
<td>0.507</td>
<td>0.572</td>
</tr>
</tbody>
</table>

Once the satellite NDVI image is received, the field is divided into three or more zones, depending on the wishes of the grower, and an application map is produced using ground truthed canopy color and associated N credits. “Green” canopies receive 90 kg ha⁻¹ credit against the N requirements of the subsequent crop, and “yellow” canopies receive 0 kg ha⁻¹ N credit. The intermediate zones receive an appropriate credit in a linear relationship based on the number of zones.

The field correlation visit is necessary because of the two-dimensional nature of the satellite image. Leaf canopy of sugar beet has depth as well as width and includes plant materials not seen by the satellite. One weakness of satellite imagery is its inability to estimate biomass in tall, dense canopies. Using a hand-held NDVI sensor (Greenseeker®, N-Tech Industries, Inc.) 150 readings were made in a 12.5 ha sugar beet field (Franzen et al., 2004) (Table 5). At the point of each set of NDVI measurements, conducted on a 3 m length of row, top height measurements were also made. Including canopy height increased the correlation of imagery with dry matter, N content, and total N of the canopy. In this study, a three-dimensional volume estimate was related to N credits more strongly than using imagery alone.

Soil sampling is generally not used after sugar beet when using the satellite imagery N credit system, because soil nitrate-N levels are very small after sugar beet production. When unusually tall, green sugar beet areas are encountered, soil testing is sometimes conducted to further modify recommendations for the subsequent crop (Franzen et al., 2002).

Growers are also beginning to use their sugar beet imagery to direct soil sampling prior to their next sugar beet crop. Rotations influence nitrogen available to sugar beet (Nuckols, 1938; Stockinger et al., 1963; James, 1971, Shook et al., 2000). Winter (1984) identified cropping systems capable of reducing excessive soil nitrate-N before sugar beet. However, most growers are tied economically to a rotation and must manage N within that framework. Franzen et al. (1998, 2000) has shown that N management zones are relatively stable between years (Figure 1). Because of this stability, sugar beet imagery could be expected to help delineate N management zones throughout the rotation, including areas to sample for the following sugar beet crop.

Zone soil testing in the Red River Valley using satellite image to help delineate nitrogen management zone boundaries has increased from zero in 1997 to about 9,000 ha in 2002 (American Crystal Sugar survey, 2003). A survey of growers suggests an economic advantage for those using a zone soil testing approach prior to sugar beet (Figure 2). Currently, studies are being conducted to determine whether imagery combined with other delineation methods would provide better direction for soil sampling than imagery alone.
Fig. 2. Sugarbeet revenue per hectare between soil sampling practices, 5-year summary, American Crystal Sugar, Moorhead, MN. Internal survey, 2003.

SUMMARY

Imagery is now considered an important tool for sugarbeet N management. Beginning with the sugarbeet crop, imagery is used to provide N credits for the following crop. The secondary crop is grown, and imagery from the sugarbeet crop, and perhaps another layer of data, such as topography, yield mapping, or soil EC, is used to direct soil sampling on the secondary and tertiary crops in the rotation. That same delineation can then be used to direct the soil sample for nitrates to a 120 cm depth prior to the sugarbeet crop N application.

For imagery to be used to successfully modify N application to any crop, a substantial data base is needed to describe the relationship between the crop, nutrition, and imagery. Once this relationship is established and accepted, the industry, research and outreach communities need to put the information into recommendations and encourage acceptance by growers. Even with the enormous amount of research and outreach effort to date in sugarbeet production, the industry is still a long way away from full acceptance of using imagery to manage N in a sugarbeet rotation, although it has made remarkable progress in just ten years.

ACKNOWLEDGEMENTS

Thanks to Dr. Allan Cattanach, Dan Bernhardson and Tom Newcomb for providing information from American Crystal Sugar grower surveys. Also thanks to Lanny Faleis of Agri Imagis, Inc.

LITERATURE CITED

