Potassium for Corn in North Dakota: Challenges in Response Prediction

John S. Breker, M.S. Student
David W. Franzen, Professor and Extension Soils Specialist
NDSU Department of Soil Science

January 18, 2017
Our Potassium Journey

• Potassium nutrition for corn
• Revising the recommendations
• Potassium rate study: 2015-2016
 – Soil test comparison
 – Yield response to fertilization
 – Sampling time for soil potassium
• Potassium mineralogy
Potassium nutrition for corn

Deficiency symptoms

• Chlorosis, necrosis of outer leaf margin

• Mobile nutrient in plant
 – Expressed in lower leaves
Potassium nutrition for corn

Near Lisbon, ND (Aug. 2016)
Soil K: 47 ppm

John S. Breker, NDSU

Plot 106
0 K₂O/ac
174 bu/ac

Plot 107
150 K₂O/ac
226 bu/ac

John S. Breker, NDSU
Our Potassium Journey

- Potassium nutrition for corn
- Revising the recommendations
- Potassium rate study: 2015-2016
 - Soil test comparison
 - Yield response to fertilization
 - Sampling time for soil potassium
- Potassium mineralogy
Increase in ND corn/soybean acres

Acreage changes

<table>
<thead>
<tr>
<th>Year</th>
<th>Corn (thousand acres)</th>
<th>Soybean (thousand acres)</th>
<th>Wheat (thousand acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1879</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1938</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yield increase

<table>
<thead>
<tr>
<th>Year</th>
<th>Corn (bushel/acre)</th>
<th>Soybean (bushel/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1879</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data source: USDA-NASS
Typical K removal in grain for principal ND crops at various yields

Change to corn/soybean production removing K at twice the rate
Soil samples with less than 150 ppm K

Fall 2016 samples
(0-6” samples)

Data provided courtesy of AGVISE Laboratories, Northwood, ND.

The NDSU Extension Service does not endorse commercial products or companies even though reference may be made to trade names, trademarks or service names.
Revisiting potassium in North Dakota

• Increase in corn/soybean acreage
 – Higher yields, higher K export
• More soil tests below critical level
 – 1980: 3% of samples (Nelson, 1980)
 – 2010: 17% of samples (Fixen et al., 2010)
• Potash price spike
 ~$150/ton (1980-early 2000s)
 $853/ton (2009)
Developing a recommendation: Find the soil test critical level

Yield related to amount of plant-available nutrient in soil

Image from https://courses.cit.cornell.edu/css412/mod3/ext_m3_pg3.htm
Soil testing for potassium

Standard method in North Central region: 1.0 M NH$_4$OAC (pH 7) extraction on dry soil
Scrutiny of soil K test method

Standard method in North Central region:

1.0 M NH₄OAC (pH 7) extraction on dry soil

- Effect of sample drying on extractable K
- Inconsistent yield responses to K fertilization
- Plant availability of nonexchangeable K
- Seasonal soil test K variation
Study objectives

1. Evaluate corn yield response to K fertilization
2. Identify adequate soil K test method
 • Determine critical level
3. Assess seasonal soil K variation
Potassium rate trials

2015: 13 sites
2016: 6 sites
Study Timeline

Spring

- RCBD with four reps
 - Expt. Unit: 10 ft x 30 ft
- Urea, MAP, gypsum broadcast
- Six KCl (0-0-60) rates
 - 0, 30, 60, 90, 120, 150 lb K₂O/acre
 - Shallow incorporation (2-3 inches)
Study Timeline

Summer
• Soil samples
 – Biweekly: 0-6 inch
• Plant samples (2016)
 – V5: Whole plant
 – VT: Ear leaf

Fall
• Harvest one 30-foot corn row
• Yield, grain moisture, test weight
Soil test methods evaluated

• 1.0 M NH₄OAC (pH 7) extraction, 5 minute
 – Air-dried soil, ground
 – Field-moist soil, sieved

• Ion-exchange resin capsule, 168 hour incubation (UNIBEST, Inc.)

• Sodium tetraphenylboron extraction (Cox et al., 1999)
 – 5 minute, most reactive nonexchangeable K
 – 168 hour, total nonexchangeable K

• Soil mineralogy (ACT Labs, Ontario)
What K pools does a soil test target?

From McLean and Watson, 1985

Exchangeable K
K ions adsorbed onto clay surfaces

Nonexchangeable K
K ions trapped in wedge sites or interlayer spaces

NH₄OAc
- Dry soil: layers warp/collapse
- Moist soil: field condition

Tetraphenylboron
- Releases interlayer-K

Resin
- Equilibrates with exchangeable/interlayer-K

From McLean and Watson, 1985
Our Potassium Journey

• Potassium nutrition for corn
• Revising the recommendations
• Potassium rate study: 2015-2016
 – Soil test comparison
 – Yield response to fertilization
 – Sampling time for soil potassium
• Potassium mineralogy
Correlations among K extraction methods

<table>
<thead>
<tr>
<th></th>
<th>Dry K</th>
<th>Moist K</th>
<th>TBK 5min</th>
<th>TBK 168hr</th>
<th>Resin K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry K</td>
<td>1.00</td>
<td>0.96</td>
<td>0.94</td>
<td>0.75</td>
<td>0.67</td>
</tr>
<tr>
<td>Moist K</td>
<td>1.00</td>
<td></td>
<td>0.89</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>TBK 5min</td>
<td></td>
<td></td>
<td>1.00</td>
<td>0.88</td>
<td>0.46</td>
</tr>
<tr>
<td>TBK 168hr</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>0.14</td>
</tr>
<tr>
<td>Resin K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
</tbody>
</table>

- **Dry K**
- **Moist K**
- **TBK 5min**
- **TBK 168hr**
- **Resin K**

Correlations

- Good correlation between NH$_4$OAC and 5-min TBK
- TBK and resin methods not related, different mechanisms
Sample drying increased NH$_4$OAc-extractable K

- Average: 1.26 times higher
- Range: 0.8-2.4
- Increase higher for low K soils
Smectitic soils released more K

\[y = 1.01 + 0.0562x \]
\[r^2 = 0.45, P < 0.01 \]
And then drying got complicated...

Figure 1.—K extracted with neutral 1N NH₄Ac from soils that had been dried to various moisture levels after increments of KCl had been added.

From Scott et al., 1957
Our Potassium Journey

• Potassium nutrition for corn
• Revising the recommendations
• Potassium rate study: 2015-2016
 – Soil test comparison
 – Yield response to fertilization
 – Sampling time for soil potassium
• Potassium mineralogy
Yield response prediction by soil test class

<table>
<thead>
<tr>
<th>Soil K test class (mg kg(^{-1}))</th>
<th>VL 0-40</th>
<th>L 41-80</th>
<th>M 81-120</th>
<th>H 121-160</th>
<th>VH 161+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of sites in soil test class</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Number of sites with significant yield response</td>
<td>---</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Probability of significant yield response</td>
<td>---</td>
<td>67%</td>
<td>33%</td>
<td>40%</td>
<td>20%</td>
</tr>
</tbody>
</table>

- Six of 14 sites below 150 ppm critical level responded (less than half)
Soil test K and yield response: NH₄OAc K on dry and moist soil

- Dry method still superior to moist method
Soil test K and yield response: Tetraphenylboron K, 5-min and 168-hr

- Not better than NH₄OAc methods
Soil test K and yield response: Resin K & %K saturation

- Resin method not significant, linear relationship
- K saturation not better than sufficiency level

\[Y = 0.95(1-0.619e^{-2.16x}) \]
\[r^2 = 0.39, P = 0.05 \]
High K_2O rate yield decrease, a response with a tail?
High K₂O rate yield decrease, a response with a tail?

<table>
<thead>
<tr>
<th>Site</th>
<th>Grain yield</th>
<th>Significant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fertilizer K rate (lb K₂O acre⁻¹)</td>
<td>Linear</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>F115</td>
<td>192 ab†</td>
<td>200 a</td>
</tr>
<tr>
<td>F215‡</td>
<td>181 c</td>
<td>190 bc</td>
</tr>
<tr>
<td>GD16</td>
<td>165 b</td>
<td>173 b</td>
</tr>
<tr>
<td>LB16</td>
<td>160 b</td>
<td>190 a</td>
</tr>
</tbody>
</table>

†Within rows, treatment means followed by the same letter are not significantly different.
‡LSD alpha-value changed to 0.1 significance level.
Correlation between Soil Test K and Tissue K

Leaf stage V5 (whole plant)

\[Y = 3.4(1-3.56\times 0.0327x) \]
\[r^2 = 0.59, P < 0.01 \]

\[Y = 3.5(1-1.63\times 0.0243x) \]
\[r^2 = 0.59, P < 0.01 \]
Correlation between Soil Test K and Tissue K

Leaf stage VT (ear leaf)

\[
Y = 0.0074x + 0.47 \\
Y = 0.0065x + 0.57
\]

\[r^2 = 0.83, P < 0.01\]
Does tissue K help predict yield?

![Graph showing the relationship between tissue K and grain yield with regression lines and R² values.]

- V5 R² = 0.02
- VT R² = 0.21
Does tissue K help predict relative yield response?

![Graph showing relative yield response vs. tissue K (%)]

- V5: $R^2 = 0.03$
- VT: $R^2 = 0.00$
What good is tissue K analysis?

In-field comparison for deficiency diagnosis

From http://xkcd.com/1725/
Our Potassium Journey

• Potassium nutrition for corn
• Revising the recommendations
• Potassium rate study: 2015-2016
 – Soil test comparison
 – Yield response to fertilization
 – Sampling time for soil potassium
• Potassium mineralogy
Sampling time: Sinusoidal pattern

Soil K trend
- Highest in spring
- Lowest late summer

2015: 12 of 13 sites followed sinusoidal pattern over time
Sampling time: Sinusoidal pattern

2016: Rainfall variability, not able to combine (Dry K, 5/6 sites)
Sampling time and soil K levels

• Soil K trends
 – Highest in late May or early June
 – Lowest in late summer
 – Crop K uptake, soil water use

• Sinusoidal pattern within year
Potassium Mineralogy: An Unexpected Journey

Primary minerals
- K-feldspar
- Micas

Clays
- Illite, vermiculite
- Smectite
 - Montmorillonite
 - Beidellite
Nonexchangeable K release may be faster than we thought

From Sparks and Huang, 1985

1000 hours ≈ 42 days

← 78 ppm

From Sparks and Huang, 1985
K-feldspar weathering

- Deep weathering pits
- Increased surface area with weathering

From Huang, 1989
Mica weathering

• Biotite
 – Mostly weathered out of soils

• Muscovite
 – Rate of K release 95% slower than biotite (Feigenbaum et al., 1981)

From Fanning et al., 1989
Mica weathering

- Weathers to
 - Hydrous mica
 - Illite
 - Vermiculite
 - Smectite

From Fanning et al., 1989
K-fixation sites on weathered mica/illite

- Mica \rightarrow Expansible 2:1 layer clay
- “Tight”, high K-affinity fixation sites
 - Frayed edges
 - Interlayer wedges

From Sparks and Huang, 1985
Interlayer-K exchangeability

- K^+ fits into wedges, may collapse layer and revert to mica/illite, “fixed K”

From Sparks and Huang, 1985
Conversion of smectite to illite after 100 wet/dry cycles

Smectite types
Montmorillonite
- Low-layer charge
- Dominant clay type

Beidellite
- High-layer charge
- Identified in Minnesota side of glacial Lake Agassiz (Badroui et al., 1987)

From Sucha and Siranova, 1991
Looking back at sample drying

Figure 1.—K extracted with neutral 1N NH₄Ac from soils that had been dried to various moisture levels after increments of KCl had been added.

From Scott et al., 1957
Site analysis: K-bearing mineral content
Site analysis:
Clay mineralogy
Does mineralogy help explain yield response?

Factor analysis:
Common factors between variables
• Mineralogy
• Relative Yield
Summary

• Sample drying increased NH$_4$OAc K
 – Variable between soils, mineralogy
• Dry K test failed to predict half of responses
 – Dry K test best predictor of yield response
• Yield occasionally tails off at high K rates
• Soil K levels follow a sinusoidal pattern over time
• Mineralogy important, but relationship not clear
Conclusions

• Dry K soil test not sufficient for directing K fertilizer recommendations
 – Moist K, TBK may not be any better
• Take soil samples at same time every year
• Potassium is far from simple
Thank you!

Acknowledgements:
Kevin Horsager
Dr. Shiny Mathews
Dr. Lakesh Sharma
Eric Schultz
Austin Kraklau
Conner Swanson
Makenzie Ries

“Tartan” twinning of K-feldspar
“There is a lot that we know [about potassium]. I don’t know if it is all useful for making a recommendation.”

-Dr. Sylvie Brouder (Purdue Univ.), 2014 SSSA Meeting
References

