SULFUR CHEMISTRY, SOIL TESTING FOR S, AND S SOURCES

Dr. Larry Cihacek
NDSU Soil and Range Science Dept.
Fargo, ND 58108-6050
Sulfur
Sulfur

- Abundant element in earth’s crust – 0.06 to 0.10 %.
- Original source – metal sulfide minerals.
- When weathered, S^{2-} oxidizes to SO_4^{2-}.
Sulfur

- SO_4^{2-} is:
 - Precipitated as soluble and insoluble SO_4^{2-} salts in arid and semi-arid climates.
 - Utilized by living organisms.
 - Reduced by microorganisms to S^{2-} or S^0 under anaerobic conditions.
 - North Dakota ground waters - ~100 to 500+ ppm SO_4^{2-}.
Sulfur

- Soil S:
 - Organic and inorganic forms.
 - ≈ 90% of total S in noncalcareous soils exists as organic S.
 - Solution and adsorbed SO_4^{2-} - readily plant available S.
 - S cycling similar to N cycling.
 - Gaseous component
 - Associated with OM.
Sulfur

- S conc. in plants range from 0.1 to 0.5 %.
- Absorbed by plant roots almost exclusively as SO_4^{2-}.
- SO_4^{2-} is reduced in plant sap to -S-S and -SH forms.
- SO_4^{2-} does occur in plant sap/tissues.
Plant S content:

- **Cruciferae** > **Leguminosae** > **Graminae**

Seed content:

- **Cruciferae** - ~ 1.1 to 1.7 %.
- **Leguminosae** - ~ 0.25 to 0.3 %.
- **Graminae** - ~ 0.18 to 0.19 %.
Sulfur

- Required for synthesis of S-containing amino acids:
 - Cystine.
 - Cysteine.
 - Methionine.
S in Soils

- **Solution SO_4^{2-}:**
 - Large seasonal and year-to-year fluctuations.
 - Organic S mineralization.
 - Movement of SO_4^{2-} in soil water (\uparrow or \downarrow).
 - SO_4^{2-} uptake by plants.
 - S fertilization.
 - Deposition in precipitation and irrigation.
Solution SO_4^{2-}:
- SO_4^{2-} readily leached through soil profile.
 - \uparrow water $= \uparrow$ leaching.
 - Cations in solution.

Monovalent $>$ divalent
S in Soil

- **Adsorbed \(\text{SO}_4^{2-} \):**
 - Affected by:
 - Soil depth:
 - Subsoil > topsoil
 - Soil pH:
 - Adsorption potential ↓ with ↑ pH
 - Negligible at pH > 6.0.
Adsorbed SO_4^{2-}:
- Affected by:
 - Solution SO_4^{2-}
 - \uparrow solution SO_4^{2-}, \uparrow adsorbed SO_4^{2-}
- Competing ions
 $\text{OH}^- \succ \text{H}_2\text{PO}_4^{2-} \succ \text{SO}_4^{2-} \succ \text{NO}_3^- \succ \text{Cl}^-$
Reduced inorganic S (S^{2-} and S^0):

- Do not accumulate/exist in well-drained soils.
- Under waterlogged, anaerobic conditions:
 - H_2S accumulates.
 - OM decay.
 - SO_4^{2-} inputs.
Reduced inorganic S (S^2 and S^0):
- S^0 not normally produced.
- Can be chemically oxidized in soil – very slow reaction.
- Most commonly biologically oxidized.
S in Soil

- S\(^0\) oxidation:
 - Soil Microbes:
 - Heterotrophic fungi and bacteria.
 - *Thiobacillus sp.* (bacteria).
 - *Fusarium sp.* (fungi).
 - *Streptomyces sp.* (actinomycetes).
 - Plant-growth promoting rhizobacteria (PGPR).
S in Soil

- **S\(^0\) oxidation:**
 - **Soil Microbes:**
 - *Thiobacillus sp.*
 - Autotrophic bacteria.
 - Obtain energy from S\(^0\) oxidation.
 - Obtain C from CO\(_2\).

 \[
 \text{CO}_2 + S^0 + 2^{1/2}\text{O}_2 + 2\text{H}_2\text{O} \rightarrow \text{CH}_2\text{O} + \text{SO}_4^{2-} + 2\text{H}^+ \]

 \[
 \text{CO}_2 + S^0 + 2^{1/2}\text{O}_2 + 2\text{H}_2\text{O} \rightarrow \text{CH}_2\text{O} + \text{SO}_4^{2-} + 2\text{H}^+ \]
S in Soil

- **S^0 oxidation:**
 - **Soil temperature:**
 - ↑ temperature, ↑ S^0 oxidation rate.
 - Optimum temperature - 25 to 40° C.
 - Above 55 to 60° C, microbial activity ↓.
S in Soil

- S^0 oxidation:
 - Soil moisture/aeration:
 - Aerobic conditions.
 - Reduction in activity when too wet or too dry.
 - Soil drying doesn’t affect oxidation ability but results in lag time on rewetting.
S in Soil

- S^0 oxidation:
 - Soil pH:
 - Can occur over wide range of pH.
 - *Thiobacillus thiooxidans* – pH 2.0 to 3.5.
 - Some species prefer neutral to slightly alkaline conditions.
Organic S:
- Close relationship between organic C, N, and S.
- C:N:S \(\sim 120:10:1.4\) in most well-drained, noncalcareous soils.
- N:S of 6:1 to 8:1 in most soils.
- Organic S governs plant-available S.
Mineralization/Immobilization:

- **Mineralization:**
 - Conversion of organic S to inorganic SO\(_4^{2-}\).
 - Similar to N mineralization.
 - Microbially mediated.
- Supplies ~ 2 to 15 lbs SO\(_4\)-S/a/yr.
Mineralization/Immobilization:
- Immobilization:
 - Reverse process of mineralization.
 - Similar to N immobilization.
Mineralization/Immobilization:

Factors:

- S content of OM (C:S ratio):
 - < 200:1 - mineralization
 - 200 – 400 - no change
 - > 400:1 - immobilization
 - Fresh residues ~ 50:1.
S in Soil

- Tendency for S deficiencies on low OM, coarse-textured soils.
- Losses due to leaching under high rainfall/irrigation conditions.
- Fertilizers containing both SO_4^{2-} and S^0 may extend availability of S.
O. M. Mineralization

Figure 1. Sulfur mineralized from six soils varying in organic matter content over a 10 week period without addition of organic matter.
Figure 2. Sulfur mineralized from six soils varying in organic matter content over a 10 week period with addition of wheat
O. M. Mineralization

Figure 3. Sulfur mineralized from six soils varying in organic matter content over a 10 week period with addition of alfalfa.
Percent of soils testing less than 3 ppm S in 2010 (for states and provinces with at least 2,000 S tests).

North America
13%
2.5 million samples

% less than 3 ppm calcium phosphate extractable S or 6 ppm Mehlich 3 S

Courtesy IPNI. 2010
Currently, using NCR-13 MCP (500 ppm P) test.

Turbidimetric test.
Soil Testing

- Current calibration (in 2 ft profile):
 - Very low – 0-9 lbs S/A
 - Low – 10-19 lbs S/A
 - Medium – 20-29 lbs S/A
 - High – 30-39 lbs S/A
 - Very high – 40+ lbs S/A

- Recommendation:
 - If <16 lbs S/A – apply 20-30 lbs S/A
May work for acid to neutral pH soils in most cases.

Potential for many interferences:
- Contamination of lab equipment
- Contamination of lab reagents – most reagents have traces of S impurities.
- Interference with calcium in soil extracts/
- ??????
Table 4. A comparison of S values for nine soils using a Ca(H$_2$PO$_4$)$_2$ extractant.

<table>
<thead>
<tr>
<th>Soil</th>
<th>T (ug/g)</th>
<th>ICP (ug/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buse A</td>
<td>6.03±1.51</td>
<td>6.83±0.57</td>
</tr>
<tr>
<td>Buse B</td>
<td>5.67±1.54</td>
<td>1.50±0.74</td>
</tr>
<tr>
<td>Buse C</td>
<td>6.64±1.56</td>
<td>1.45±0.87</td>
</tr>
<tr>
<td>Barnes A</td>
<td>6.46±1.14</td>
<td>7.01±0.68</td>
</tr>
<tr>
<td>Barnes B</td>
<td>5.30±1.27</td>
<td>2.56±0.85</td>
</tr>
<tr>
<td>Barnes C</td>
<td>6.61±1.54</td>
<td>2.04±0.68</td>
</tr>
<tr>
<td>Svea A</td>
<td>7.21±0.90</td>
<td>12.08±0.73</td>
</tr>
<tr>
<td>Svea B</td>
<td>7.95±0.61</td>
<td>8.54±0.81</td>
</tr>
<tr>
<td>Svea C</td>
<td>5.53±0.65</td>
<td>4.34±0.62</td>
</tr>
</tbody>
</table>
Table 5. A comparison of S values for nine soils using a 0.25 M KCl extractant at room temperature.

<table>
<thead>
<tr>
<th>Soil</th>
<th>T</th>
<th>ICP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buse A</td>
<td>0.45±0.30</td>
<td>23.09±0.69</td>
</tr>
<tr>
<td>Buse B</td>
<td>0.16±0.15</td>
<td>7.30±0.16</td>
</tr>
<tr>
<td>Buse C</td>
<td>0.44±0.23</td>
<td>7.11±0.18</td>
</tr>
<tr>
<td>BarnesA</td>
<td>1.34±0.56</td>
<td>26.18±0.18</td>
</tr>
<tr>
<td>Barnes B</td>
<td>0.60±0.97</td>
<td>16.35±0.20</td>
</tr>
<tr>
<td>Barnes C</td>
<td>0.74±0.19</td>
<td>10.25±0.34</td>
</tr>
<tr>
<td>Svea A</td>
<td>2.78±0.54</td>
<td>31.43±0.39</td>
</tr>
<tr>
<td>Svea B</td>
<td>3.24±0.48</td>
<td>28.15±0.42</td>
</tr>
<tr>
<td>Svea C</td>
<td>2.01±0.46</td>
<td>17.57±0.39</td>
</tr>
</tbody>
</table>
0.25 M KCl may be more sensitive to differences in soil SO₄-S.

However, it requires more complex, expensive ICP instrumentation (higher cost).

Soil test recommendations may need extensive recalibration.
S Sources

Atmospheric sources
Organic S:
- Sufficient quantities usually found in solid wastes and manures.
- Organic waste S content – 0.2 to 1.5 % (5 to 25 lbs/t dry wt.).
S Sources

- **Inorganic S:**
 - Fertilizer materials.
 - Surface applied and incorporated or moved into the soil with rainfall or irrigation.
 - Usually immediately available unless immobilized by microbes in high residue situation.
 - Most materials equally effective.
S Sources

- **Ammonium sulfate** \((\text{NH}_4)_2\text{SO}_4\) or AS:
 - Contains 24 % S and 21% N.
 - Used where both N and S are required.
 - Manufactured in ND (DakSul).
 - Used for canola production.
Potassium sulfate (K_2SO_4)/potassium magnesium sulfate ($\text{K}_2\text{SO}_4 \cdot \text{MgSO}_4$):

- Potassium sulfate – K fertilizer
- K-Mag, Sul-Po-Mag.
- Contain 17 % and 22 % S, respectively.
- Highly soluble, low salt index.
S Sources

- Ammonium thiosulfate ((NH₄)₂S₂O₃ or ATS):
 - Clear liquid containing 12 % N and 26 % S.
 - Compatible with N and N-P-K solutions that are near neutral or slightly acidic in pH.
 - Popular liquid S source.
Ammonium thiosulfate \((\text{NH}_4)_2\text{S}_2\text{O}_3\) or ATS:

- Can be applied:
 - Directly to soil
 - In fertilizer mixtures.
 - Through irrigation systems.
- **Ammonium thiosulfate** ((NH$_4$)$_2$S$_2$O$_3$ or ATS):
 - Forms colloidal S and (NH$_4$)$_2$SO$_4$ when applied to soil.
 - SO$_4^{2-}$ immediately available.
 - S0 must be oxidized to SO$_4^{2-}$.
 - Extended availability.
 - Some urease inhibition effect.
Elemental S (S^0)
- Conversion to SO_4-S previously discussed.
- Needs to be applied prior to desired growing season.
- May not be as effective as other sources due to environmental conditions required and leaching potential.
S Sources

- **Gypsum?**
 - Results equivalent to AS.
 - Better than elemental S°.
S chemistry is complex.
S analysis is difficult.
Current S soil tests do not appear to be fully effective in the Northern Plains.
Need for a new (or different) test?
AS, K sulfate, K-Mg sulfate and gypsum most effective fertilizer sources.
Questions?